Back to Search Start Over

HAPRAP: a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics

Authors :
Lea Trela-Larsen
Yi Zheng
Jie Zheng
Meena Kumari
Aroon D. Hingorani
Richard W Morris
Claudia Giambartolomei
A. Mesut Erzurumluoglu
Delilah Zabaneh
Denis Baird
Jon White
Charles Laurin
David M. Evans
Ian N. M. Day
Tom R. Gaunt
Santiago Rodriguez
Juan P. Casas
Source :
Bioinformatics (Oxford, England), Zheng, J, Rodriguez, S, Laurin, C, Baird, D, Trela-Larsen, L, Erzurumluoglu, M, Zheng, Y, White, J, Giambartolomei, C, Zabaneh, D, Morris, R, Kumari, M, Casas, J-P, Hingorani, A D, Evans, D, Gaunt, T & Day, I 2017, ' HAPRAP : a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics ', Bioinformatics, vol. 33, no. 1, pp. 79-86 . https://doi.org/10.1093/bioinformatics/btw565, Zheng, J, Rodriguez, S, Laurin, C, Baird, D, Trela-Larsen, L, Erzurumluoglu, M A, Zheng, Y, White, J, Giambartolomei, C, Zabaneh, D, Morris, R, Kumari, M, Casas, J P, Hingorani, A D, Evans, D M, Gaunt, T R, Day, I N M 2016, ' HAPRAP : a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics ', BIOINFORMATICS . https://doi.org/10.1093/bioinformatics/btw565
Publication Year :
2016

Abstract

Motivation Fine mapping is a widely used approach for identifying the causal variant(s) at disease-associated loci. Standard methods (e.g. multiple regression) require individual level genotypes. Recent fine mapping methods using summary-level data require the pairwise correlation coefficients (r2) of the variants. However, haplotypes rather than pairwise r2, are the true biological representation of linkage disequilibrium (LD) among multiple loci. In this article, we present an empirical iterative method, HAPlotype Regional Association analysis Program (HAPRAP), that enables fine mapping using summary statistics and haplotype information from an individual-level reference panel. Results Simulations with individual-level genotypes show that the results of HAPRAP and multiple regression are highly consistent. In simulation with summary-level data, we demonstrate that HAPRAP is less sensitive to poor LD estimates. In a parametric simulation using Genetic Investigation of ANthropometric Traits height data, HAPRAP performs well with a small training sample size (N Availability and Implementation The HAPRAP package and documentation are available at http://apps.biocompute.org.uk/haprap/ Supplementary information Supplementary data are available at Bioinformatics online.

Details

Language :
English
ISSN :
13674811 and 13674803
Volume :
33
Issue :
1
Database :
OpenAIRE
Journal :
Bioinformatics (Oxford, England)
Accession number :
edsair.doi.dedup.....40bf2047f5256bb14570c915e3bf024b