Back to Search
Start Over
Banach function algebras and certain polynomially norm-preserving maps
- Source :
- Banach J. Math. Anal. 6, no. 2 (2012), 1-18, Scopus-Elsevier
- Publication Year :
- 2012
- Publisher :
- Springer Science and Business Media LLC, 2012.
-
Abstract
- Let $A$ and $B$ be Banach function algebras on compact Hausdorff spaces $X$ and $Y$, respectively. Given a non-zero scalar $\alpha$and $s,t\in \Bbb N$ we characterize the general form of suitable powers of surjective maps $T, T': A \longrightarrow B$ satisfying $\|(Tf)^s (T'g)^t-\alpha\|_Y=\|f^s g^t-\alpha \|_X$, for all $f,g \in A$, where $\|\cdot \|_X$ and $\|\cdot \|_Y$ denote the supremum norms on $X$ and $Y$, respectively. A similar result is given for the case where $T=T'$ and $T$ is defined between certain subsets of $A$ and $B$. We also show that if $T: A\longrightarrow B$ is a surjective map satisfying the stronger condition$R_\pi((Tf)^{s}(Tg)^{t}-\alpha)\cap R_\pi(f^{s}g^{t}-\alpha)\neq\varnothing $ for all $f,g \in A$, where $R_\pi(\cdot)$ denotes the peripheral range of the algebra elements, then there exists a homeomorphism $\varphi$ from the Choquet boundary $c(B)$ of $B$ onto the Choquet boundary $c(A)$ of $A$ such that $(Tf)^{d}(y)=(T1)^{d}(y)\,(f \circ \varphi(y))^{d}$ for all $f\in A$ and $y\in c(B)$,where $d$ is the greatest common divisor of $s$ and $t$.
- Subjects :
- peripheral spectrum
Discrete mathematics
Algebra and Number Theory
Scalar (mathematics)
Choquet boundary
peripheral range
Infimum and supremum
Banach function algebra
Surjective function
Norm (mathematics)
Greatest common divisor
46J20
46J10
47B48
Analysis
polynomially norm-preserving map
Mathematics
Subjects
Details
- ISSN :
- 17358787
- Volume :
- 6
- Database :
- OpenAIRE
- Journal :
- Banach Journal of Mathematical Analysis
- Accession number :
- edsair.doi.dedup.....40d764eeafbe31c5c98c185a6678084d
- Full Text :
- https://doi.org/10.15352/bjma/1342210157