Back to Search Start Over

Banach function algebras and certain polynomially norm-preserving maps

Authors :
Fereshteh Sady
Maliheh Hosseini
Source :
Banach J. Math. Anal. 6, no. 2 (2012), 1-18, Scopus-Elsevier
Publication Year :
2012
Publisher :
Springer Science and Business Media LLC, 2012.

Abstract

Let $A$ and $B$ be Banach function algebras on compact Hausdorff spaces $X$ and $Y$, respectively. Given a non-zero scalar $\alpha$and $s,t\in \Bbb N$ we characterize the general form of suitable powers of surjective maps $T, T': A \longrightarrow B$ satisfying $\|(Tf)^s (T'g)^t-\alpha\|_Y=\|f^s g^t-\alpha \|_X$, for all $f,g \in A$, where $\|\cdot \|_X$ and $\|\cdot \|_Y$ denote the supremum norms on $X$ and $Y$, respectively. A similar result is given for the case where $T=T'$ and $T$ is defined between certain subsets of $A$ and $B$. We also show that if $T: A\longrightarrow B$ is a surjective map satisfying the stronger condition$R_\pi((Tf)^{s}(Tg)^{t}-\alpha)\cap R_\pi(f^{s}g^{t}-\alpha)\neq\varnothing $ for all $f,g \in A$, where $R_\pi(\cdot)$ denotes the peripheral range of the algebra elements, then there exists a homeomorphism $\varphi$ from the Choquet boundary $c(B)$ of $B$ onto the Choquet boundary $c(A)$ of $A$ such that $(Tf)^{d}(y)=(T1)^{d}(y)\,(f \circ \varphi(y))^{d}$ for all $f\in A$ and $y\in c(B)$,where $d$ is the greatest common divisor of $s$ and $t$.

Details

ISSN :
17358787
Volume :
6
Database :
OpenAIRE
Journal :
Banach Journal of Mathematical Analysis
Accession number :
edsair.doi.dedup.....40d764eeafbe31c5c98c185a6678084d
Full Text :
https://doi.org/10.15352/bjma/1342210157