Back to Search Start Over

Soil nitrogen and water management by winter-killed catch crops

Authors :
Ulf Feuerstein
Diana Heuermann
Jens Boy
Norman Gentsch
Nicolaus von Wirén
Georg Guggenberger
Steffen Schierding
Dörte Schweneker
Publication Year :
2021
Publisher :
Copernicus GmbH, 2021.

Abstract

Improving N cycling in agroecosystems is one of the key challenges in reducing the environmental footprint of agriculture. Further, uncertainty in precipitation makes crop water management relevant in regions where it has not been necessary thus far. Here, we focus on the potential of winter-killed catch crops to reduce N leaching losses from N mineralization over the winter and soil water management. We compared four single catch crops (white mustard, phacelia, Egyptian clover and bristle oat) and a fallow treatment with two catch crop mixtures with 4 and 12 plant species (Mix4 and Mix12). High-resolution soil mineral N (Nmin) monitoring in combination with modelling of spatiotemporal dynamics served to assess N cycling under winter-killed catch crops, while soil water was continuously monitored in the rooting zone. Catch crops depleted the residual Nmin pools by between 40 and 72 % compared to the fallow. The amount of residual N uptake was lowest for clover and not significantly different among the other catch crops. Catch crops that produce high N litter materials, such as clover and mustard leaves, showed an early N mineralization flush immediately after their termination and the highest leaching losses from litter mineralization over the winter. Except for clover, all catch crops showed Nmin values between 18 and 92 % higher on the sowing date of the following maize crop. However, only Mix12 was statistically significant. Catch crops depleted the soil water storage in the rooting zone during their growth in autumn and early winter, but preserved water later on when their residues cover the ground. The shallow incorporation of catch crop residues increased water storage capacity during the cropping season of the main crop even under drought conditions. Hence, catch cropping is not just a simple plant cover during the winter but improved the growth conditions for the following crop at decreased N losses. Mixtures have been shown to compensate for the weaknesses of individual catch crop species in terms of nutrient capture, mineralization and transfer to the following main crop as well as for soil water management. Detailed knowledge about plant performance during growth and litter mineralization patterns is necessary to make optimal use of their full potential.

Details

ISSN :
2199398X
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....40def7d04339d9e02b4f91478b0436fe
Full Text :
https://doi.org/10.5194/soil-2021-124