Back to Search Start Over

Keratin/Polylactic acid/graphene oxide composite nanofibers for drug delivery

Authors :
Gioacchino Schifino
Claudio Gasparini
Simone Drudi
Marta Giannelli
Giovanna Sotgiu
Tamara Posati
Roberto Zamboni
Emanuele Treossi
Emanuele Maccaferri
Loris Giorgini
Raffaello Mazzarro
Vittorio Morandi
Vincenzo Palermo
Monica Bertoldo
Annalisa Aluigi
Source :
International Journal of Pharmaceutics. 623:121888
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

In this work keratin/poly(lactic acid) (PLA) 50/50 wt blend nanofibers with different loadings of graphene-oxide (GO) were prepared by electrospinning and tested as delivery systems of Rhodamine Blue (RhB), selected as a model of a drug. The effect of GO on the electrospinnability and drug release mechanism and kinetics was investigated. Rheological measurements carried out on the blend solutions revealed unsatisfactory compatibility between keratin and PLA under quiet condition. Accordingly, poor interfacial adhesion between the two phases was observed by SEM analysis of a film prepared by solution casting. On the contrary, keratin chains seem to rearrange under the flux conditions of the electrospinning process thus promoting better interfacial interactions between the two polymers, thereby enhancing their miscibility, which resulted in homogeneous and defect-free nanofibers. The loading of GO into the keratin/PLA solution contributes to increase its viscosity, its shear thinning behavior, and its conductivity. Accordingly, thinner and more homogeneous nanofibers resulted from solutions with a relatively high conductivity coupled with a pronounced shear thinning behavior. FTIR and DSC analyses have underlined, that while the PLA/GO interfacial interactions significantly compete with the PLA/keratin ones, there are no significant effects of GO on the structural organization of keratin in blend with the PLA. However, GO offers several advantages from the application point of view by slightly improving the mechanical properties of the electrospun mats and by slowing down the release of the model drug through the reduction of the matrix swelling.

Details

ISSN :
03785173
Volume :
623
Database :
OpenAIRE
Journal :
International Journal of Pharmaceutics
Accession number :
edsair.doi.dedup.....40ea377493180fe9139173dea285ac6a
Full Text :
https://doi.org/10.1016/j.ijpharm.2022.121888