Back to Search Start Over

Effects of rising temperature on the formation and microbial degradation of marine diatom aggregates

Authors :
Nicole Händel
Ulf Riebesell
Gerald Langer
Julia Wohlers
Anja Engel
Judith Piontek
Source :
Aquatic Microbial Ecology, 54 . pp. 305-318.
Publication Year :
2009
Publisher :
Inter Research, 2009.

Abstract

Effects of elevated temperature on the formation and subsequent degradation of diatom aggregates were studied in a laboratory experiment with a natural plankton community from the Kiel Fjord (Baltic Sea). Aggregates were derived from diatom blooms that developed in indoor mesocosms at 2.5 and 8.5 degrees C, corresponding to the 1993 to 2002 mean winter in situ temperature of the Western Baltic Sea and the projected sea surface temperature during winter in 2100, respectively. Formation and degradation of diatom aggregates at these 2 temperatures in the dark were promoted with roller tanks over a period of 11 d. Comparison of the 2 temperature settings revealed an enhanced aggregation potential of diatom cells at elevated temperature, which was likely induced by an increased concentration of transparent exopolymer particles (TEP). The enhanced aggregation potential led to a significantly higher proportion of particulate organic matter in aggregates at 8.5 degrees C. Moreover, the elevated temperature favoured the growth of bacteria, bacterial biomass production, and the activities of sugar- and protein-degrading extracellular enzymes in aggregates. Stimulating effects of rising temperature on growth and metabolism of the bacterial community resulted in an earlier onset of aggregate degradation and silica dissolution. Remineralization of carbon in aggregates at elevated temperature was partially compensated by the formation of carbon-rich TEP during dark incubation. Hence, our results suggest that increasing temperature will affect both formation and degradation of diatom aggregates. We conclude that the vertical export of organic matter through aggregates may change in the future, depending on the magnitude and vertical depth penetration of warming in the ocean.

Details

Database :
OpenAIRE
Journal :
Aquatic Microbial Ecology, 54 . pp. 305-318.
Accession number :
edsair.doi.dedup.....40f63d8166144aa07a3eb9e41b2f49d5