Back to Search
Start Over
Independent recruitment of a conserved developmental mechanism during leaf evolution
- Source :
- Nature. 434(7032)
- Publication Year :
- 2004
-
Abstract
- Vascular plants evolved in the Middle to Late Silurian period, about 420 million years ago. The fossil record indicates that these primitive plants had branched stems with sporangia but no leaves. Leaf-like lateral outgrowths subsequently evolved on at least two independent occasions. In extant plants, these events are represented by microphyllous leaves in lycophytes (clubmosses, spikemosses and quillworts) and megaphyllous leaves in euphyllophytes (ferns, gymnosperms and angiosperms). Our current understanding of how leaves develop is restricted to processes that operate during megaphyll formation. Because microphylls and megaphylls evolved independently, different mechanisms might be required for leaf formation. Here we show that this is not so. Gene expression data from a microphyllous lycophyte, phylogenetic analyses, and a cross-species complementation experiment all show that a common developmental mechanism can underpin both microphyll and megaphyll formation. We propose that this mechanism might have operated originally in the context of primitive plant apices to facilitate bifurcation. Recruitment of this pathway to form leaves occurred independently and in parallel in different plant lineages.
- Subjects :
- Plant genetics
Meristem
Molecular Sequence Data
Arabidopsis
Gene Dosage
Context (language use)
Biology
Genes, Plant
Models, Biological
Plant Roots
Zea mays
Phylogenetics
Gene Expression Regulation, Plant
Botany
Antirrhinum
Leaf formation
Phylogeny
Plant Proteins
Multidisciplinary
Phylogenetic tree
Mechanism (biology)
Arabidopsis Proteins
Fossils
Sporangium
fungi
Genetic Complementation Test
food and beverages
Microphyll
Biological Evolution
Plant Leaves
RNA, Plant
Mutation
Protein Binding
Transcription Factors
Subjects
Details
- ISSN :
- 14764687
- Volume :
- 434
- Issue :
- 7032
- Database :
- OpenAIRE
- Journal :
- Nature
- Accession number :
- edsair.doi.dedup.....412e917e3a1d08f268ea1dbf985530e6