Back to Search Start Over

Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices

Authors :
Maria Júlia Bassan de Moraes
Mauro Mitsuuchi Tashima
Lourdes Soriano
M.V. Borrachero
Jorge Luís Akasaki
J.C.B. Moraes
Jordi Payá
Universidade Estadual Paulista (Unesp)
ITA – Aeronautics Institute of Technology
Universitat Politècnica de València
Source :
Scopus, Repositório Institucional da UNESP, Universidade Estadual Paulista (UNESP), instacron:UNESP, RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
Publication Year :
2019
Publisher :
Elsevier, 2019.

Abstract

[EN] In the context of world concern with the environment, this study aims to characterize an auto combustion produced bamboo leaf ash (BLA) by its pozzolanic behaviour, reactivity and its influence in the total porosity, pore size distribution, tortuosity and mechanical behaviour of cementitious matrices. The chemical and physical characterization of the BLA was carried using X-ray fluorescence, determination of amorphous silica content, X-ray diffraction, Fourier Transform Infrared Spectrophotometry (FTIR), laser granulometry and field emission scanning electron microscopy (FESEM). The assessed BLA is a siliceous material (74.23%) with an amorphous nature due to the amorphous silica content, which represents 92.33% of the total silica. The BLA was classified as highly reactive by assessing its pH and conductivity in a saturated calcium hydroxide (CH) medium for different proportions and temperatures. Frattini analysis, the study of CH:BLA pastes (Thermogravimetric analysis and FTIR) and Portland cement (OPC)/pozzolan pastes (Thermogravimetric analysis and FESEM) are in agreement with this classification. The replacement of OPC by BLA improved the mechanical behaviour of the cementitious matrices, as well their durability. All the mortars containing BLA presented very similar compressive strength to a control mortar (100% OPC) after only 3 days of curing and at the following tested curing ages: 7, 28 and 90 days. In the mercury intrusion porosimetry analysis, the pastes with 20 and 30% BLA content presented higher tortuosity or fewer connected pores than the control paste. Thus, the auto-combustion method proved to be successful and BLA is a suitable alternative for sustainable high-performance matrices. (C) 2019 Elsevier Ltd. All rights reserved.<br />The authors would like to thank São Paulo Research Foundation (FAPESP), grant #2016/16403-5 and #2017/21563-4.

Details

Language :
English
Database :
OpenAIRE
Journal :
Scopus, Repositório Institucional da UNESP, Universidade Estadual Paulista (UNESP), instacron:UNESP, RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
Accession number :
edsair.doi.dedup.....4144914a6249f1f01f4fb34babd357d2
Full Text :
https://doi.org/10.1016/j.conbuildmat.2019.03.007