Back to Search Start Over

Minimal faithful upper-triangular matrix representations for solvable Lie algebras

Authors :
Juan Núñez
Manuel Ceballos
Ángel F. Tenorio
Universidad de Sevilla. Departamento de Geometría y Topología
Universidad de Sevilla. FQM326: Geometría Diferencial y Teoría de Lie
Ministerio de Economia, Industria y Competitividad (MINECO). España
European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)
Source :
idUS. Depósito de Investigación de la Universidad de Sevilla, instname
Publication Year :
2017
Publisher :
Elsevier, 2017.

Abstract

A well-known result on Lie Theory states that every finite-dimensional complex solvable Lie algebra can be represented as a matrix Lie algebra, with upper-triangular square matrices as elements. However, this result does not specify which is the minimal order of the matrices involved in such representations. Hence, the main goal of this paper is to revisit and implement a method to compute both that minimal order and a matrix representative for a given solvable Lie algebra. As application of this procedure, we compute representatives for each solvable Lie algebra with dimension less than $6$.<br />19 pages, 6 tables

Details

Language :
English
Database :
OpenAIRE
Journal :
idUS. Depósito de Investigación de la Universidad de Sevilla, instname
Accession number :
edsair.doi.dedup.....415cf9c1adf0a19bd4103cb3fff50c61