Back to Search
Start Over
Minimal faithful upper-triangular matrix representations for solvable Lie algebras
- Source :
- idUS. Depósito de Investigación de la Universidad de Sevilla, instname
- Publication Year :
- 2017
- Publisher :
- Elsevier, 2017.
-
Abstract
- A well-known result on Lie Theory states that every finite-dimensional complex solvable Lie algebra can be represented as a matrix Lie algebra, with upper-triangular square matrices as elements. However, this result does not specify which is the minimal order of the matrices involved in such representations. Hence, the main goal of this paper is to revisit and implement a method to compute both that minimal order and a matrix representative for a given solvable Lie algebra. As application of this procedure, we compute representatives for each solvable Lie algebra with dimension less than $6$.<br />19 pages, 6 tables
- Subjects :
- Triangular matrix
010103 numerical & computational mathematics
01 natural sciences
Graded Lie algebra
Non-numerical algorithm
Symbolic computation
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
FOS: Mathematics
0101 mathematics
Representation Theory (math.RT)
Mathematics
Faithful upper-triangular matrix representation
Solvable Lie algebra
Applied Mathematics
010102 general mathematics
Kac–Moody algebra
Affine Lie algebra
Lie conformal algebra
Algebra
Computational Mathematics
Adjoint representation of a Lie algebra
Fundamental representation
17\, B\, 30, 17\, B\, 05, 17--08, 68W30, 68W05
Minimal representation
Mathematics - Representation Theory
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- idUS. Depósito de Investigación de la Universidad de Sevilla, instname
- Accession number :
- edsair.doi.dedup.....415cf9c1adf0a19bd4103cb3fff50c61