Back to Search Start Over

Um Modelo de Predição para Seleccionar para Co-Gestão Doentes de Cirurgia Colo-rectal

Authors :
Alexandra Horta
Miguel Xavier
Carlos F. G. C. Geraldes
Catia M. Salgado
Ana Luísa Papoila
Susana M. Vieira
Fundação Nacional para a Ciência e Tecnologia
Source :
Acta Médica Portuguesa, Vol 34, Iss 2, Pp 118-127 (2021), Acta Médica Portuguesa; v. 34, n. 2 (2021): Fevereiro; 118-127, Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Publication Year :
2021
Publisher :
Ordem dos Médicos, 2021.

Abstract

Increased life expectancy leads to older and frailer surgical patients. Co-management between medical and surgical specialities has proven favourable in complex situations. Selection of patients for co-management is full of difficulties. The aim of this study was to develop a clinical decision support tool to select surgical patients for co-management.Clinical data was collected from patient electronic health records with an ICD-9 code for colorectal surgery from January 2012 to December 2015 at a hospital in Lisbon. The outcome variable consists in co-management signalling. A dataset from 344 patients was used to develop the prediction model and a second data set from 168 patients was used for external validation.Using logistic regression modelling the authors built a five variable (age, burden of comorbidities, ASA-PS status, surgical risk and recovery time) predictive referral model for co-management. This model has an area under the curve (AUC) of 0.86 (95% CI: 0.81 - 0.90), a predictive Brier score of 0.11, a sensitivity of 0.80, a specificity of 0.82 and an accuracy of 81.3%.Early referral of high-risk patients may be valuable to guide the decision on the best level of post-operative clinical care. We developed a simple bedside decision tool with a good discriminatory and predictive performance in order to select patients for comanagement.A simple bed-side clinical decision support tool of patients for co-management is viable, leading to potential improvement in early recognition and management of postoperative complications and reducing the 'failure to rescue'. Generalizability to other clinical settings requires adequate customization and validation.Introdução: O aumento da esperança média de vida leva a que a população cirúrgica seja cada vez mais velha e frágil. Os modelos colaborativos de co-gestão entre especialidades médicas e cirúrgicas têm demonstrado ser favoráveis em situações complexas. A selecção de doentes para co-gestão está repleta de dificuldades. O objectivo deste estudo foi construir uma ferramenta de apoio à decisão para selecionar doentes de submetidos a cirurgia colo-rectal para co-gestão. Material e Métodos: A informação clínica foi colhida dos processos clínicos electrónicos de doentes que tiveram um código ICD-9 de cirurgia colo-rectal no período de janeiro 2012 a dezembro 2015, num hospital em Lisboa. A variável resposta consiste na sinalização para co-gestão. Um conjunto de dados de 344 doentes foi usado para o desenvolvimento do modelo predictivo e, um segundo conjunto de dados de 168 doentes foi usado para a validação externa do modelo. Resultados: Os autores construíram um modelo predictivo, de regressão logística, com cinco variáveis clínicas (idade, carga de co-morbilidades, ASA-PS status, risco cirúrgico e tempo de recobro) para predizer a selecção de doentes para co-gestão. O modelo tem uma área sob a curva (AUC) de 0,86 (95% IC: 0,81 - 0,90), um score predictivo de Brier de 0,11, uma sensibilidade de 0,80, uma especificidade de 0,82 e uma precisão de classificação de 81,3%. Discussão: A sinalização precoce dos doentes de alto risco ajuda a definir o melhor nível de cuidados ao doente operado. Desenvolvemos uma ferramenta de apoio à decisão, simples, aplicável à cabeceira do doente com uma boa capacidade discriminativa e preditiva para seleccionar os doentes para co-gestão. Conclusão: A selecção de doentes para co-gestão entre a cirurgia e a medicina interna permite o reconhecimento e a correcção precoce de complicações pós-operatórias reduzindo o ‘failure to rescue’. A ferramenta, uma vez customizada e validada, poderá ser aplicada em outros cenários clínicos.

Details

Language :
English
ISSN :
16460758 and 0870399X
Volume :
34
Issue :
2
Database :
OpenAIRE
Journal :
Acta Médica Portuguesa
Accession number :
edsair.doi.dedup.....417c83f095341f0f50d5593246c8c559