Back to Search Start Over

Effect of organic cations in locally concentrated ionic liquid electrolytes on the electrochemical performance of lithium metal batteries

Authors :
Xu Liu
Andrea Mele
Xu Dong
Stefano Passerini
Giuseppe Antonio Elia
Alessandro Mariani
Maria Enrica Di Pietro
Maider Zarrabeitia
Source :
Energy Storage Materials. 44:370-378
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

Organic cations are essential components of locally concentrated ionic liquid electrolytes (LCILEs), but receive little attention. Herein, we demonstrate their significant influence on the electrochemical performance of lithium metal batteries via a comparison study of two LCILEs employing either 1‑butyl‑1-methylpyrrolidinium cation (Pyr14+) or 1-ethyl-3-methylimidazolium cation (Emim+). It is demonstrated that the structure of the organic cation in LCILEs has only a limited effect on the Li+- bis(fluorosulfonyl)imide anion (FSI−) coordination. Nonetheless, the coordination of FSI− with the organic cations is different. The less coordination of FSI− to Emim+ than to Pyr14+ results in the lower viscosity and faster Li+ transport in the Emim+-based electrolyte (EmiBE) than the Pyr14+-based electrolyte (PyrBE). Additionally, the chemical composition of the solid-electrolyte interphase (SEI) formed on lithium metal is affected by the organic cations. A more stable SEI growing in the presence of Emim+ leads to a higher lithium plating/stripping Coulombic efficiency (99.2%). As a result, Li/EmiBE/LiNi0.8Mn0.1Co0.1O2 cells exhibit a capacity of 185 mAh g−1 at 1C discharge (2 mA cm−2) and capacity retention of 96% after 200 cycles. Under the same conditions, PyrBE-based cells show only 34 mAh g−1 capacity with 39.6% retention.

Details

ISSN :
24058297
Volume :
44
Database :
OpenAIRE
Journal :
Energy Storage Materials
Accession number :
edsair.doi.dedup.....4192c8221207997bda1671dc83536522
Full Text :
https://doi.org/10.1016/j.ensm.2021.10.034