Back to Search Start Over

Penta-Hexa-Graphene Nanoribbons: Intrinsic Magnetism and Edge Effect Induce Spin-Gapless Semiconducting and Half-Metallic Properties

Authors :
Zhong-Xiang Xie
Xia Yu
Yong Zhang
Yuan-Xiang Deng
Ke-Qiu Chen
Li-Ming Tang
Shi-Zhang Chen
Source :
ACS Applied Materials & Interfaces. 12:53088-53095
Publication Year :
2020
Publisher :
American Chemical Society (ACS), 2020.

Abstract

Two-dimensional materials with intrinsic long-range ordered magnetic moments have drawn a lot of attention. However, for practical applications, whether or not the magnetism is stable in their nanostructures has not been revealed. Here, based on the recently proposed magnetic penta-hexa-graphene, we study the electronic and magnetic properties of its nanoribbons (named PHGNRs). The results show that the PHGNRs have intrinsic robust magnetic moments that are different from zigzag graphene nanoribbons, where the magnetic moments caused by the edge effect are vulnerable. Moreover, the magnetic ground states, namely, ferromagnetic (FM) or antiferromagnetic (AFM), can be transformed by changing the width of PHGNRs. Most interestingly, under the FM ground state, the spin-polarized electronic properties reveal that the zigzag PHGNRs transform from spin-gapless semiconductors (SGSs) to half-metals, as the width of nanoribbons increases, while all the armchair PHGNRs are magnetic semiconductors. Furthermore, by considering different edge effects caused by the residual carbon atoms on the edges, the PHGNRs can further derive different types of SGSs, as well as half-metals. Our work suggests that the PHGNRs possessing intrinsic robust magnetic moments have potential applications in the field of spintronic devices.

Details

ISSN :
19448252 and 19448244
Volume :
12
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....41cb2c1627a1bbf36da34d0b7c61dd68
Full Text :
https://doi.org/10.1021/acsami.0c14768