Back to Search Start Over

Modelling non-proportional hazard for survival data with different systematic components

Authors :
Edwin M. M. Ortega
Gauss M. Cordeiro
Fábio Prataviera
Kathleen Fernandes Grego
Selene Loibel
Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Inst Butantan
Universidade Federal de Pernambuco (UFPE)
Source :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP, Web of Science, Repositório Institucional da UNESP, Universidade Estadual Paulista (UNESP), instacron:UNESP
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Made available in DSpace on 2020-12-10T17:35:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2020-06-30 We propose a new extended regression model based on the logarithm of the generalized odd log-logistic Weibull distribution with four systematic components for the analysis of survival data. This regression model can be very useful and could give more realistic fits than other special regression models. We obtain the maximum likelihood estimates of the model parameters for censored data and address influence diagnostics and residual analysis. We prove empirically the importance of the proposed regression by means of a real data set (survival times of the captive snakes) from a study carried out at the Herpetology Laboratory of the Butantan Institute in Sao Paulo, Brazil. Univ Sao Paulo, Dept Ciencias Exatas, Piracicaba, SP, Brazil Univ Estadual Paulista, Sao Paulo, SP, Brazil Inst Butantan, Lab Herpetol, Sao Paulo, SP, Brazil Univ Fed Pernambuco, Dept Estat, Recife, PE, Brazil Univ Estadual Paulista, Sao Paulo, SP, Brazil

Details

ISSN :
15733009 and 13528505
Volume :
27
Database :
OpenAIRE
Journal :
Environmental and Ecological Statistics
Accession number :
edsair.doi.dedup.....41d3db22ced9dfcaaf70001234b05330
Full Text :
https://doi.org/10.1007/s10651-020-00453-5