Back to Search Start Over

POSITIVE LEGENDRIAN ISOTOPIES AND FLOER THEORY

Authors :
Baptiste Chantraine
Vincent Colin
Georgios Dimitroglou Rizell
Laboratoire de Mathématiques Jean Leray (LMJL)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics [Uppsala]
Uppsala University
ANR-13-JS01-0008,cospin,Invariants spectraux de contact(2013)
European Project: 278246,EC:FP7:ERC,ERC-2011-StG_20101014,GEODYCON(2012)
Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)
Source :
Annales de l'Institut Fourier, Annales de l'Institut Fourier, 2019, 69 (4), pp.1679-1737, Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2019, 69 (4), pp.1679-1737
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Positive loops of Legendrian embeddings are examined from the point of view of Floer homology of Lagrangian cobordisms. This leads to new obstructions to the existence of a positive loop containing a given Legendrian, expressed in terms of the Legendrian contact homology of the Legendrian submanifold. As applications, old and new examples of orderable contact manifolds are obtained and discussed. We also show that contact manifolds admitting a filling of a Liouville domain with non-zero symplectic homology is strongly orderable in the sense of Liu.<br />43 pages. v2: more details, mainly in Section 5. Changes in introduction, added some references and Theorem 1.19. v3: minor corrections, v4: update in the bibliography and change the references accordingly. To appear at "Annales de l'Institut Fourier"

Details

Language :
English
ISSN :
03730956 and 17775310
Database :
OpenAIRE
Journal :
Annales de l'Institut Fourier, Annales de l'Institut Fourier, 2019, 69 (4), pp.1679-1737, Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2019, 69 (4), pp.1679-1737
Accession number :
edsair.doi.dedup.....41e83abc955ec65e00878e94eac6193e