Back to Search Start Over

MicroRNA hsa-miR-150-5p inhibits nasopharyngeal carcinogenesis by suppressing PYCR1 (pyrroline-5-carboxylate reductase 1)

Authors :
Xiaoliu Zhou
Xuejun Zhou
Zhencai Xu
Junwei Yang
Chengliang Xing
Zhiqun Li
Jiajun Huang
Source :
Bioengineered, article-version (VoR) Version of Record, Bioengineered, Vol 12, Iss 2, Pp 9766-9778 (2021)
Publication Year :
2021
Publisher :
Informa UK Limited, 2021.

Abstract

Nasopharyngeal cancer is a rare cancer type, but with a low five-year survival rate. Dysregulation of pyrroline-5-carboxylate reductase 1 (PYCR1) and microRNA hsa-miR-150-5p is involved in the development of various cancers. However, the molecular mechanism of the hsa-miR-150-5p-PYCR1 axis in nasopharyngeal cancer remains unclear. To identify the mechanism of the hsa-miR-150-5p-PYCR1 axis, the expression of hsa-miR-150-5p and PYCR1 in nasopharyngeal cancer tissues and cells was first measured by reverse transcription quantitative polymerase chain reaction. The luciferase and RNA pull-down assays were used to confirm the interaction between hsa-miR-150-5p and PYCR1. The overexpression of hsa-miR-150-5p and PYCR1 was detected by cell viability, proliferation, western blotting, migration, and invasion in nasopharyngeal cancer cells. The expression levels of hsa-miR-150-5p was reduced in the nasopharyngeal cancer tissues and cells and were negatively correlated with the PYCR1 levels. The upregulation of hsa-miR-150-5p significantly repressed cell growth and promoted apoptosis. However, the upregulation of PYCR1 expression significantly promoted nasopharyngeal carcinogenesis, which could abolish the inhibitory effect of hsa-miR-150-5p. In conclusion, we clarified that hsa-miR-150-5p attenuated nasopharyngeal carcinogenesis by reducing the PYCR1 expression levels. This provides a new perspective of nasopharyngeal cancer involving both hsa-miR-150-5p and PYCR1 for the treatment of nasopharyngeal cancer.

Details

ISSN :
21655987 and 21655979
Volume :
12
Database :
OpenAIRE
Journal :
Bioengineered
Accession number :
edsair.doi.dedup.....42b8176e6c29b6d3c70c6c94927e30a0
Full Text :
https://doi.org/10.1080/21655979.2021.1995102