Back to Search
Start Over
Identification of relevant properties for epitopes detection using a regression model
- Source :
- IEEE/ACM transactions on computational biology and bioinformatics. 8(6)
- Publication Year :
- 2011
-
Abstract
- A B-cell epitope is a part of an antigen that is recognized by a specific antibody or B-cell receptor. Detecting the immunogenic region of the antigen is useful in numerous immunodetection and immunotherapeutics applications. The aim of this paper is to find relevant properties to discriminate the location of potential epitopes from the rest of the protein surface. The most relevant properties, identified using two evaluation approaches, are the geometric properties, followed by the conservation score and some chemical properties, such as the proportion of glycine. The selected properties are used in a patch-based epitope localization method including a Single-Layer Perceptron for regression. The output of this Single-Layer Perceptron is used to construct a probability map on the antigen surface. The predictive performances of the method are assessed by computing the AUC using cross validation on two benchmark data sets and by computing the AUC and the precision for a third independent test set.
- Subjects :
- Models, Molecular
business.industry
Surface Properties
Applied Mathematics
Pattern recognition
Regression analysis
Biology
Perceptron
Regression
Epitope
Cross-validation
Antigen
Test set
Area Under Curve
Immunology
Genetics
Probability distribution
Epitopes, B-Lymphocyte
Regression Analysis
Artificial intelligence
business
Epitope Mapping
Biotechnology
Subjects
Details
- ISSN :
- 15579964
- Volume :
- 8
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- IEEE/ACM transactions on computational biology and bioinformatics
- Accession number :
- edsair.doi.dedup.....432accd5c7e433e7ffedb8ab21a7f1eb