Back to Search
Start Over
Limited thermal acclimation of photosynthesis in tropical montane tree species
- Source :
- Global Change Biology
- Publication Year :
- 2021
-
Abstract
- The temperature sensitivity of physiological processes and growth of tropical trees remains a key uncertainty in predicting how tropical forests will adjust to future climates. In particular, our knowledge regarding warming responses of photosynthesis, and its underlying biochemical mechanisms, is very limited. We grew seedlings of two tropical montane rainforest tree species, the early-successional species Harungana montana and the late-successional species Syzygium guineense, at three different sites along an elevation gradient, differing by 6.8℃ in daytime ambient air temperature. Their physiological and growth performance was investigated at each site. The optimum temperature of net photosynthesis (ToptA ) did not significantly increase in warm-grown trees in either species. Similarly, the thermal optima (ToptV and ToptJ ) and activation energies (EaV and EaJ ) of maximum Rubisco carboxylation capacity (Vcmax ) and maximum electron transport rate (Jmax ) were largely unaffected by warming. However, Vcmax , Jmax and foliar dark respiration (Rd ) at 25℃ were significantly reduced by warming in both species, and this decline was partly associated with concomitant reduction in total leaf nitrogen content. The ratio of Jmax /Vcmax decreased with increasing leaf temperature for both species, but the ratio at 25℃ was constant across sites. Furthermore, in H. montana, stomatal conductance at 25℃ remained constant across the different temperature treatments, while in S. guineense it increased with warming. Total dry biomass increased with warming in H. montana but remained constant in S. guineense. The biomass allocated to roots, stem and leaves was not affected by warming in H. montana, whereas the biomass allocated to roots significantly increased in S. guineense. Overall, our findings show that in these two tropical montane rainforest tree species, the capacity to acclimate the thermal optimum of photosynthesis is limited while warming-induced reductions in respiration and photosynthetic capacity rates are tightly coupled and linked to responses of leaf nitrogen.
- Subjects :
- 0106 biological sciences
Stomatal conductance
Acclimatization
Ribulose-Bisphosphate Carboxylase
Syzygium guineense
Rainforest
Biology
Forests
Photosynthesis
010603 evolutionary biology
01 natural sciences
Trees
Respiration
Environmental Chemistry
General Environmental Science
Global and Planetary Change
Biomass (ecology)
Ecology
Temperature
food and beverages
15. Life on land
Carbon Dioxide
biology.organism_classification
Photosynthetic capacity
Plant Leaves
Horticulture
13. Climate action
010606 plant biology & botany
Subjects
Details
- ISSN :
- 13541013
- Database :
- OpenAIRE
- Journal :
- Global Change Biology
- Accession number :
- edsair.doi.dedup.....434d0666f3f6c720b46fa9dc85a5d36e
- Full Text :
- https://doi.org/10.1111/gcb.15790