Back to Search Start Over

3D-Printed Möbius Microring Lasers: Topology Engineering in Photonic Microstructures

Authors :
Xianqing Lin
Wu Zhou
Yingying Liu
Fang‐Jie Shu
Chang‐Ling Zou
Chunhua Dong
Cong Wei
Haiyun Dong
Chuang Zhang
Jiannian Yao
Yong Sheng Zhao
Source :
Small (Weinheim an der Bergstrasse, Germany). 18(33)
Publication Year :
2022

Abstract

Manipulating photons in artificially structured materials is highly desired in modern photonic technology. Nontrivial topological structures are rapidly emerging as a state-of-art platform for achieving unprecedented fascinating phenomena of photon manipulation. However, the current studies mainly focus on planar structures, and the fabrication of photonic microstructures with specific topological geometric features still remains a great challenge. Extending the topological photonics to 3D microarchitectures is expected to enrich the photon manipulation capabilities and further advance the topological photonic devices. Here, a femtosecond laser direct writing technique is employed to fabricate 3D topological Möbius microring resonators from dye-doped polymer. The high-quality-factor Möbius microring resonator supports a unique spin-orbit coupled lasing at very low threshold. Due to the spin-orbit coupling induced geometric/Berry phase, the Möbius microrings, in striking contrast with ordinary microrings, output laser signals with all polarization states. The manipulation of miniaturized coherent light sources in the fabricated Möbius microrings represents a significant step forward toward 3D topological photonics that offers a novel design philosophy for functional photonic and optoelectronic devices.

Details

ISSN :
16136829
Volume :
18
Issue :
33
Database :
OpenAIRE
Journal :
Small (Weinheim an der Bergstrasse, Germany)
Accession number :
edsair.doi.dedup.....4371ce1f47cd6346c4184575c749bfd5