Back to Search
Start Over
Analysis of transactivation potential of rice (Oryza sativa L.) heat shock factors
- Source :
- Planta. 247:1267-1276
- Publication Year :
- 2018
- Publisher :
- Springer Science and Business Media LLC, 2018.
-
Abstract
- Based on yeast one-hybrid assays, we show that the presence of C-terminal AHA motifs is not a prerequisite for transactivation potential in rice heat shock factors. Transcriptional activation or transactivation (TA) of heat stress responsive genes takes place by binding of heat shock factors (Hsfs) to heat shock elements. Analysis of TA potential of thirteen rice (Oryza sativa L.) Hsfs (OsHsfs) carried out in this study by yeast one-hybrid assay showed that OsHsfsA3 possesses strong TA potential while OsHsfs A1a, A2a, A2b, A4a, A4d, A5, A7b, B1, B2a, B2b, B2c and B4d lack TA potential. From a near complete picture of TA potential of the OsHsf family (comprising of 25 members) emerging from this study and an earlier report from our group (Mittal et al. in FEBS J 278(17):3076-3085, 2011), it is concluded that (1) overall, six OsHsfs, namely A3, A6a, A6b, A8, C1a and C1b possess TA potential; (2) four class A OsHsfs, namely A3, A6a, A6b and A8 have TA potential out of which A6a and A6b contain AHA motifs while A3 and A8 lack AHA motifs; (3) nine class A OsHsfs, namely A1a, A2a, A2b, A2e, A4a, A4d, A5, A7a and A7b containing AHA motif(s) lack TA function in the yeast assay system; (4) all class B OsHsfs lack AHA motifs and TA potential (B4a not analyzed) and (5) though all class C OsHsf members lack AHA motifs, two members C1a and C1b possess TA function, while one member C2a lacks TA potential (C2b not analyzed). Thus, the presence or absence of AHA motif is possibly not the only factor determining TA potential of OsHsfs. Our findings will help to identify the transcriptional activators of rice heat shock response.
- Subjects :
- Transcriptional Activation
0106 biological sciences
0301 basic medicine
Genetics
Oryza sativa
Chemistry
Oryza
Plant Science
01 natural sciences
Yeast
Heat stress
Heat shock factor
03 medical and health sciences
Transactivation
030104 developmental biology
Heat Shock Transcription Factors
Gene Expression Regulation, Plant
Genes, Reporter
Two-Hybrid System Techniques
Heat shock
Gene
Heat-Shock Response
Plant Proteins
010606 plant biology & botany
Subjects
Details
- ISSN :
- 14322048 and 00320935
- Volume :
- 247
- Database :
- OpenAIRE
- Journal :
- Planta
- Accession number :
- edsair.doi.dedup.....43e71f8618b343b4a8b1ab83912e0826
- Full Text :
- https://doi.org/10.1007/s00425-018-2865-2