Back to Search Start Over

High-performance supercabatteries using graphite@diamond nano-needle capacitor electrodes and redox electrolytes

Authors :
Kamatchi Jothiramalingam Sankaran
Xin Jiang
Svetlana Korneychuk
Siyu Yu
Ken Haenen
Johan Verbeeck
Nianjun Yang
Source :
Nanoscale
Publication Year :
2019

Abstract

Supercabatteries have the characteristics of supercapacitors and batteries, namely high power and energy densities as well as long cycle life. To construct them, capacitor electrodes with wide potential windows and/or redox electrolytes are required. Herein, graphite@diamond nano-needles and an aqueous solution of Fe(CN)(6)(3-/4-) are utilized as the capacitor electrode and the electrolyte, respectively. This diamond capacitor electrode has a nitrogen-doped diamond core and a nano-graphitic shell. In 0.05 M Fe(CN)(6)(3-/4-) + 1.0 M Na2SO4 aqueous solution, the fabricated supercabattery has a capacitance of 66.65 mF cm(-2) at a scan rate of 10 mV s(-1). It is stable over 10 000 charge/discharge cycles. The symmetric supercabattery device assembled using a two-electrode system possesses energy and power densities of 10.40 W h kg(-1) and 6.96 kW kg(-1), respectively. These values are comparable to those of other energy storage devices. Therefore, diamond supercabatteries are promising for many industrial applications. S. Yu and K. J. Sankaran contributed equally to this work. N. Yang acknowledges funding from the German Science Foundation under the project of YA344/1-1. J. Verbeeck and S. Korneychuk acknowledge the funding from the GOA project "Solarpaint" of the University of Antwerp. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. K. J. Sankaran and K. Haenen like to acknowledge the financial support of the Methusalem "NANO" network. S. Yu likes to acknowledge the financial support from fundamental research funds for the central universities (Grant No. SWU019001).

Details

ISSN :
20403372 and 20403364
Volume :
11
Issue :
38
Database :
OpenAIRE
Journal :
Nanoscale
Accession number :
edsair.doi.dedup.....441a17d7fa134c7e8d1644216a9f110a