Back to Search Start Over

A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map

Authors :
Simone Callegari
John David Weissmann
George Lake
Natalie Tkachenko
Wesley P. Petersen
Christoph P. E. Zollikofer
Source :
PLoS ONE, 12 (1), PLoS ONE, Vol 12, Iss 1, p e0167514 (2017), PLoS ONE
Publication Year :
2017
Publisher :
ETH Zurich, 2017.

Abstract

We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas.<br />PLoS ONE, 12 (1)<br />ISSN:1932-6203

Details

Language :
English
ISSN :
19326203
Database :
OpenAIRE
Journal :
PLoS ONE, 12 (1), PLoS ONE, Vol 12, Iss 1, p e0167514 (2017), PLoS ONE
Accession number :
edsair.doi.dedup.....44213361d02f985e0c4b627bd79d004e
Full Text :
https://doi.org/10.3929/ethz-b-000232511