Back to Search Start Over

Knowledge based identification of essential signaling from genome-scale siRNA experiments

Authors :
Carol A. Rohl
Nolwenn LeMeur
Chester Ni
Armand Bankhead
Iliana Sach
Robert Gentleman
Marc Ferrer
Mark J Kruger
Rosetta Inpharmatics LLC
Merck & Co. Inc
Biological systems and models, bioinformatics and sequences (SYMBIOSE)
Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Rennes – Bretagne Atlantique
Institut National de Recherche en Informatique et en Automatique (Inria)
Automated Biotechnology
Computational Biology Program
Fred Hutchinson Cancer Research Center [Seattle] (FHCRC)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Rennes – Bretagne Atlantique
BMC, Ed.
Source :
BMC Systems Biology, BMC Systems Biology, BioMed Central, 2009, 3 (1), pp.80. ⟨10.1186/1752-0509-3-80⟩, BMC Systems Biology, 2009, 3 (1), pp.80. ⟨10.1186/1752-0509-3-80⟩, BMC Systems Biology, Vol 3, Iss 1, p 80 (2009)
Publication Year :
2009

Abstract

Background A systems biology interpretation of genome-scale RNA interference (RNAi) experiments is complicated by scope, experimental variability and network signaling robustness. Over representation approaches (ORA), such as the Hypergeometric or z-score, are an established statistical framework used to associate RNA interference effectors to biologically annotated gene sets or pathways. These methods, however, do not directly take advantage of our growing understanding of the interactome. Furthermore, these methods can miss partial pathway activation and may be biased by protein complexes. Here we present a novel ORA, protein interaction permutation analysis (PIPA), that takes advantage of canonical pathways and established protein interactions to identify pathways enriched for protein interactions connecting RNAi hits. Results We use PIPA to analyze genome-scale siRNA cell growth screens performed in HeLa and TOV cell lines. First we show that interacting gene pair siRNA hits are more reproducible than single gene hits. Using protein interactions, PIPA identifies enriched pathways not found using the standard Hypergeometric analysis including the FAK cytoskeletal remodeling pathway. Different branches of the FAK pathway are distinctly essential in HeLa versus TOV cell lines while other portions are uneffected by siRNA perturbations. Enriched hits belong to protein interactions associated with cell cycle regulation, anti-apoptosis, and signal transduction. Conclusion PIPA provides an analytical framework to interpret siRNA screen data by merging biologically annotated gene sets with the human interactome. As a result we identify pathways and signaling hypotheses that are statistically enriched to effect cell growth in human cell lines. This method provides a complementary approach to standard gene set enrichment that utilizes the additional knowledge of specific interactions within biological gene sets.

Details

ISSN :
17520509
Volume :
3
Database :
OpenAIRE
Journal :
BMC systems biology
Accession number :
edsair.doi.dedup.....44a1d507fe3dc633f82dd1cb3cbcce3c