Back to Search Start Over

Cohesive-frictional interface model for timber-concrete contacts

Authors :
Joonas Jaaranen
Gerhard Fink
Department of Civil Engineering
Aalto-yliopisto
Aalto University
Source :
International Journal of Solids and Structures. :111174
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Publisher Copyright: © 2021 The Author(s) This paper presents a two-dimensional interface model for timber-concrete contacts, that has been developed based on the empirical observations from a set of friction tests and additional micromechanical assumptions. In tangential direction, the interface model accounts initial bonding and debonding between the surfaces, different static and kinetic friction as well as smooth transition between them, effects of load reversal, pressure-dependence in friction and sticking stiffness and slip softening over increasing cumulative slip. In normal direction, simple linear cohesive and pressure-overclosure behaviour is assumed. The model has been formulated in cohesive-frictional interface framework, coupling damage-based cohesive behaviour with elastoplasticity-based frictional behaviour. The model has been tested in various cases and verified by comparison on a set of 27 tests on timber-concrete contact pairs under cyclic loading with varying normal pressure and multiple different material pairs. The interface model is able to capture relevant parts of the experimentally observed tangential behaviour, indicating suitability to present timber-concrete interface behaviour under cyclic loading. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Details

ISSN :
00207683
Database :
OpenAIRE
Journal :
International Journal of Solids and Structures
Accession number :
edsair.doi.dedup.....44c9f586d6945ec4c7018bfa78b58f7e
Full Text :
https://doi.org/10.1016/j.ijsolstr.2021.111174