Back to Search
Start Over
Cohesive-frictional interface model for timber-concrete contacts
- Source :
- International Journal of Solids and Structures. :111174
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Publisher Copyright: © 2021 The Author(s) This paper presents a two-dimensional interface model for timber-concrete contacts, that has been developed based on the empirical observations from a set of friction tests and additional micromechanical assumptions. In tangential direction, the interface model accounts initial bonding and debonding between the surfaces, different static and kinetic friction as well as smooth transition between them, effects of load reversal, pressure-dependence in friction and sticking stiffness and slip softening over increasing cumulative slip. In normal direction, simple linear cohesive and pressure-overclosure behaviour is assumed. The model has been formulated in cohesive-frictional interface framework, coupling damage-based cohesive behaviour with elastoplasticity-based frictional behaviour. The model has been tested in various cases and verified by comparison on a set of 27 tests on timber-concrete contact pairs under cyclic loading with varying normal pressure and multiple different material pairs. The interface model is able to capture relevant parts of the experimentally observed tangential behaviour, indicating suitability to present timber-concrete interface behaviour under cyclic loading. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
- Subjects :
- Bonding
Materials science
Friction
Interface (Java)
Interface model
Applied Mathematics
Mechanical Engineering
Stiffness
Mechanics
Slip (materials science)
Condensed Matter Physics
Mechanics of Materials
Modeling and Simulation
medicine
Cyclic loading
Coupling (piping)
General Materials Science
medicine.symptom
Normal
Softening
Timber-concrete
Subjects
Details
- ISSN :
- 00207683
- Database :
- OpenAIRE
- Journal :
- International Journal of Solids and Structures
- Accession number :
- edsair.doi.dedup.....44c9f586d6945ec4c7018bfa78b58f7e
- Full Text :
- https://doi.org/10.1016/j.ijsolstr.2021.111174