Back to Search Start Over

Approaching the increasing complexity of non-small cell lung cancer taxonomy

Authors :
Alfredo Pagliuca
Ruggero De Maria
Michele Signore
Monica Bartucci
M Patrizii
Marcello Maugeri-SaccĂ 
Source :
Current pharmaceutical design. 20(24)
Publication Year :
2013

Abstract

The advent of molecular targeted agents is changing the treatment of solid tumors. In non-small-cell lung cancer, compounds directed against oncogenic proteins offer novel therapeutic opportunities for a fraction of patients whose tumors harbor specific genetic defects. With the increased level of resolution achieved by high-throughput technologies, the taxonomy of lung cancer is rapidly changing. For instance, by cataloguing genetic abnormalities in squamous cell lung cancer the Cancer Genome Atlas Network revealed the existence of multiple molecular entities, each one characterized by specific molecular abnormalities, and by a different spectrum of activated/ inactivated molecular networks. Although this increased complexity could be perceived as a further drawback in effective anticancer therapy, on the other hand the combined interrogation of genomic and proteomic data is expected to provide the whole molecular map of each tumor, and to determine the information flow in the explored biological system. In particular, novel genetic and proteomic approaches are offering the opportunity for matching specific genetic defects and aberrant protein-protein interactions with active pathway-targeted inhibitors. Moreover, the isolation and characterization of a cellular pool endowed with stem-like traits, and able to recapitulate the parental disease in animals, is enabling investigators to recreate the individual patient tumor in the laboratory. In this article, we discuss how novel technologies and cellular and animal models, applied to lung cancer research, hold the potential to foster a new wave of biomarker-driven clinical trials.

Details

ISSN :
18734286
Volume :
20
Issue :
24
Database :
OpenAIRE
Journal :
Current pharmaceutical design
Accession number :
edsair.doi.dedup.....44d82e2c630f59f7545231f5cd5bccde