Back to Search Start Over

Cell specificity and properties of the C-3 epimerization of Vitamin D3 metabolites

Authors :
Maya Kamao
Susumi Hatakeyama
Natsumi Sawada
Toshio Okano
Noboru Kubodera
Syuichiro Tatematsu
Toshiyuki Sakaki
Source :
The Journal of steroid biochemistry and molecular biology. (1-5)
Publication Year :
2004

Abstract

It is well documented that Vitamin D3 metabolites and synthetic analogs are metabolized to their epimers of the hydroxyl group at C-3 of the A-ring. We investigated the C-3 epimerization of Vitamin D3 metabolites in various cultured cells and basic properties of the enzyme responsible for the C-3 epimerization. 1alpha,25-Dihydroxyvitamin D3 [1alpha,25(OH)2D3], 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] were metabolized to the respective C-3 epimers in UMR-106 (rat osteosarcoma), MG-63 (human osteosarcoma), Caco-2 (human colon adenocarcinoma), LLC-PK1 (porcine kidney) and HepG2 (human hepatoblastoma)] cells, although the differences existed in the amount of each C-3 epimer formed with different cell types. In terms of maximum velocity (Vmax) and Michaelis constant (Km) values for the C-3 epimerization in microsome fraction of UMR-106 cells, 25(OH)D3 exhibited the highest specificity for the C-3 epimerization among 1alpha,25(OH)2D3, 25(OH)D3 and 24,25(OH)2D3. C-3 epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha --> beta) -hydroxysteroid epimerase (HSE) catalyzed the C-3 epimerization in vitro. Based on these results, the enzyme responsible for the C-3 epimerization of Vitamin D3 are thought to be different from already-known cytochrome P450-related Vitamin D metabolic enzymes and HSE.

Details

ISSN :
09600760
Issue :
1-5
Database :
OpenAIRE
Journal :
The Journal of steroid biochemistry and molecular biology
Accession number :
edsair.doi.dedup.....451f35216cc186db0eecaa6bbbf0100e