Back to Search Start Over

Reuse of Predesigned Dual-Functional Metal Organic Frameworks (DF-MOFs) after Heavy Metal Removal

Authors :
Leili Esrafili
Fahimeh Dehghani Firuzabadi
Ali Morsali
Mao-Lin Hu
Source :
Journal of Hazardous Materials. 403:123696
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Designing porous and functionalized adsorbents and achieving high efficiency in heavy metals removal from wastewater is in the spotlight of environmental science. On the other hand, upon removal, adsorbents are still highly hazardous requiring that great care be taken in its packaging, transporting and storing. A fundamental route in the synthesis of functional extended structures is the ability to combine different chemical entities in a controlled way in order to achieve high performance. Herein, we report the systematic design of dual-functionalized metal organic framework (TMU-81) by incorporating sulfonyl and amide groups for the removal of Cd(II), Cu(II) and Cr(II) ions from simulated aqueous solutions. TMU-81 showed significant enhancement in heavy metals uptake suggesting that the strong host - guest interactions between cations and the donor sites play a major role in adsorption process. The maximum adsorption capacity for Cd2+ was 526 mg/g which is among the highest values reported for similar MOFs and other porous materials. The good performance in uptake and selectivity of TMU-81 can be attributed to the network structure that shaping the void, create mono-dimensional channels, decorated by exposed oxygen atom sites selective for Cadmium ion. Environmental "compatibility" of a treated MOFs was studied in order to evaluate its possible recycling as a new template for different applications by using pyrolysis method. Engineering of the pore surface provides a potential for MOF with a hybrid interface to act as a versatile tool for the design of multifunctional nanoparticles to meet specific application requirements.

Details

ISSN :
03043894
Volume :
403
Database :
OpenAIRE
Journal :
Journal of Hazardous Materials
Accession number :
edsair.doi.dedup.....457e6c5b0b57873b1985a878c22eafed
Full Text :
https://doi.org/10.1016/j.jhazmat.2020.123696