Back to Search
Start Over
Exceptional points in two simple textbook examples
- Publication Year :
- 2017
-
Abstract
- We propose to introduce the concept of exceptional points in intermediate courses on mathematics and classical mechanics by means of simple textbook examples. The first one is an ordinary second-order differential equation with constant coefficients. The second one is the well-known damped harmonic oscillator. From a strict mathematical viewpoint both are the same problem that enables one to connect the occurrence of linearly dependent exponential solutions with a defective matrix which cannot be diagonalized but can be transformed into a Jordan canonical form. Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
- Subjects :
- Constant coefficients
Jordan matrix
JORDAN MATRIX
Differential equation
Físico-Química, Ciencia de los Polímeros, Electroquímica
FOS: Physical sciences
General Physics and Astronomy
Physics - Classical Physics
01 natural sciences
010305 fluids & plasmas
symbols.namesake
Simple (abstract algebra)
0103 physical sciences
Canonical form
010306 general physics
DAMPED HARMONIC OSCILLATOR
Harmonic oscillator
Physics
Ciencias Químicas
Classical Physics (physics.class-ph)
ORDINARY DIFFERENTIAL EQUATION
Algebra
Ordinary differential equation
EXCEPTIONAL POINT
symbols
Defective matrix
CIENCIAS NATURALES Y EXACTAS
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....45bf5aa95a12213cf9804dbf54dee31d