Back to Search Start Over

Neuroregeneration of Induced Pluripotent Stem Cells in Polyacrylamide-Chitosan Inverted Colloidal Crystal Scaffolds with Poly(lactide-co-glycolide) Nanoparticles and Transactivator of Transcription von Hippel-Lindau Peptide

Authors :
Yung-Chih Kuo
Chun-Wei Chen
Source :
Tissue Engineering Part A. 23:263-274
Publication Year :
2017
Publisher :
Mary Ann Liebert Inc, 2017.

Abstract

Polyacrylamide (PAAM) and chitosan were fabricated by inverted colloidal crystal (ICC) method for scaffolds comprising regular pores. The hybrid PAAM-chitosan ICC scaffolds were grafted with poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) for a rougher pore surface and grafted with transactivator of transcription von Hippel-Lindau (TATVHL) peptide for a better differentiation of induced pluripotent stem (iPS) cells toward neural lineage. By scanning electron microscopy, we found that iPS cells cultured in PAAM-chitosan ICC scaffolds with PLGA NPs at 1.0 mg/mL and TATVHL peptide at 15 μg/mL elongated the axonal length to 15 μm. A combination of PLGA NPs and TATVHL peptide favored the adhesion of iPS cells, reduced the embryonic phenotype after cultivation, and guided the production of βIII tubulin-positive cells in PAAM-chitosan ICC scaffolds. In addition to the differentiation toward neurite-like cells, an increase in the content of TATVHL peptide in PAAM-chitosan ICC scaffolds inhibited the differentiation of iPS cells toward astrocytes. ICC scaffolds composed of PAAM, chitosan, PLGA NPs, and TATVHL peptide can be an efficacious matrix to differentiate iPS cells toward neurons and retard the glial formation for nerve regeneration.

Details

ISSN :
1937335X and 19373341
Volume :
23
Database :
OpenAIRE
Journal :
Tissue Engineering Part A
Accession number :
edsair.doi.dedup.....4611e3220a30ce9034f50b74d0c7e0e7