Back to Search Start Over

Life Cycle Greenhouse Gas Emissions of Gastrointestinal Biopsies in a Surgical Pathology Laboratory

Authors :
Michael Overcash
Cassandra L. Thiel
Michael S. Leapman
Jodi D. Sherman
Ilyssa O. Gordon
Source :
American Journal of Clinical Pathology. 156:540-549
Publication Year :
2021
Publisher :
Oxford University Press (OUP), 2021.

Abstract

Objectives Given adverse health effects of climate change and contributions of the US health care sector to greenhouse gas (GHG) emissions, environmentally sustainable delivery of care is needed. We applied life cycle assessment to quantify GHGs associated with processing a gastrointestinal biopsy in order to identify emissions hotspots and guide mitigation strategies. Methods The biopsy process at a large academic pathology laboratory was grouped into steps. Each supply and reagent was catalogued and postuse treatment noted. Energy consumption was estimated for capital equipment. Two common scenarios were considered: 1 case with 1 specimen jar (scenario 1) and 1 case with 3 specimen jars (scenario 2). Results Scenario 1 generated 0.29 kg of carbon dioxide equivalents (kg CO2e), whereas scenario 2 resulted in 0.79 kg CO2e—equivalent to 0.7 and 2.0 miles driven, respectively. The largest proportion of GHGs (36%) in either scenario came from the tissue processor step. The second largest contributor (19%) was case accessioning, mostly attributable to production of single-use disposable jars. Conclusions Applied to more than 20 million biopsies performed in the US annually, emissions from biopsy processing is equivalent to yearly GHG emissions from 1,200 passenger cars. Mitigation strategies may include modification of surveillance guidelines to include the number of specimen jars.

Details

ISSN :
19437722 and 00029173
Volume :
156
Database :
OpenAIRE
Journal :
American Journal of Clinical Pathology
Accession number :
edsair.doi.dedup.....468792a91355adde0e073a3f315bd86b
Full Text :
https://doi.org/10.1093/ajcp/aqab021