Back to Search
Start Over
Shot noise and spin-orbit coherent control of entangled and spin-polarized electrons
- Publication Year :
- 2005
- Publisher :
- Universität Regensburg, 2005.
-
Abstract
- We extend our previous work on shot noise for entangled and spin polarized electrons in a beam-splitter geometry with spin-orbit (\textit{s-o}) interaction in one of the incoming leads (lead 1). Besides accounting for both the Dresselhaus and the Rashba spin-orbit terms, we present general formulas for the shot noise of singlet and triplets states derived within the scattering approach. We determine the full scattering matrix of the system for the case of leads with \textit{two} orbital channels coupled via weak \textit{s-o} interactions inducing channel anticrossings. We show that this interband coupling coherently transfers electrons between the channels and gives rise to an additional modulation angle -- dependent on both the Rashba and Dresselhaus interaction strengths -- which allows for further independent coherent control of the electrons traversing the incoming leads. We derive explicit shot noise formulas for a variety of correlated pairs (e.g., Bell states) and lead spin polarizations. Interestingly, the singlet and \textit{each} of the triplets defined along the quantization axis perpendicular to lead 1 (with the local \textit{s-o} interaction) and in the plane of the beam splitter display distinctive shot noise for injection energies near the channel anticrossings; hence, one can tell apart all the triplets, in addition to the singlet, through noise measurements. We also find that spin-orbit induced backscattering within lead 1 reduces the visibility of the noise oscillations, due to the additional partition noise in this lead. Finally, we consider injection of two-particle wavepackets into leads with multiple discrete states and find that two-particle entanglement can still be observed via noise bunching and antibunching.<br />30 two-column pages and 7 figures
- Subjects :
- FOS: Physical sciences
Electron
Quantum entanglement
pacs:72.25.-b
Quantum mechanics
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
ddc:530
Physics
Bell state
Quantum Physics
Spin polarization
Condensed Matter - Mesoscale and Nanoscale Physics
Scattering
pacs:72.70.+m
Quantum noise
Shot noise
pacs:72.15.Gd
Condensed Matter Physics
pacs:71.70.Ej
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
530 Physik
Electronic, Optical and Magnetic Materials
pacs:73.23.-b
Coherent control
Quantum Physics (quant-ph)
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....46baee749188fb862e1d938269545382
- Full Text :
- https://doi.org/10.5283/epub.28229