Back to Search
Start Over
Functional relations of solutions of $q$-difference equations
- Source :
- Mathematische Zeitschrift, Mathematische Zeitschrift, 2021, ⟨10.1007/s00209-020-02669-4⟩, Mathematische Zeitschrift, Springer, 2021, ⟨10.1007/s00209-020-02669-4⟩
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- In this paper, we study the algebraic relations satisfied by the solutions of q-difference equations and their transforms with respect to an auxiliary operator. Our main tools are the parametrized Galois theories developed in Hardouin and Singer (Math Ann 342(2):333–377, 2008) and Ovchinnikov and Wibmer (Int Math Res Not 12:3962–4018, 2015). The first part of this paper is concerned with the case where the auxiliary operator is a derivation, whereas the second part deals with a $$\mathbf {q}$$ -difference operator. In both cases, we give criteria to guarantee the algebraic independence of a series, solution of a q-difference equation, with either its successive derivatives or its $$\mathbf {q}$$ -transforms. We apply our results to q-hypergeometric series.
- Subjects :
- Pure mathematics
Mathematics - Number Theory
Series (mathematics)
General Mathematics
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
010102 general mathematics
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
39A06, 12H10
01 natural sciences
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Operator (computer programming)
Algebraic relations
0103 physical sciences
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
FOS: Mathematics
Number Theory (math.NT)
010307 mathematical physics
Algebraic independence
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
0101 mathematics
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 00255874 and 14321823
- Database :
- OpenAIRE
- Journal :
- Mathematische Zeitschrift, Mathematische Zeitschrift, 2021, ⟨10.1007/s00209-020-02669-4⟩, Mathematische Zeitschrift, Springer, 2021, ⟨10.1007/s00209-020-02669-4⟩
- Accession number :
- edsair.doi.dedup.....46e01b03d066381d832632b2bd74c134
- Full Text :
- https://doi.org/10.1007/s00209-020-02669-4⟩