Back to Search Start Over

Crystal Structure at 1.8 Å Resolution and Identification of Active Site Residues of Sulfolobus solfataricus Peptidyl-tRNA Hydrolase

Authors :
Pierre Plateau
Christine Lazennec
Emmanuelle Schmitt
Sylvain Blanquet
Michel Fromant
Yves Mechulam
Laboratoire de Biochimie de l'Ecole polytechnique (BIOC)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Source :
Biochemistry, Biochemistry, American Chemical Society, 2005, 44 (11), pp.4294-301. ⟨10.1021/bi047711k⟩
Publication Year :
2005
Publisher :
American Chemical Society (ACS), 2005.

Abstract

International audience; The 3-D structure of the peptidyl-tRNA hydrolase from the archaea Sulfolobus solfataricus has been solved at 1.8 A resolution. Homologues of this enzyme are found in archaea and eucarya. Bacteria display a different type of peptidyl-tRNA hydrolase that is also encountered in eucarya. In solution, the S. solfataricus hydrolase behaves as a dimer. In agreement, the crystalline structure of this enzyme indicates the formation of a dimer. Each protomer is made of a mixed five-stranded beta-sheet surrounded by two groups of two alpha-helices. The dimer interface is mainly formed by van der Waals interactions between hydrophobic residues belonging to the two N-terminal alpha1 helices contributed by two protomers. Site-directed mutagenesis experiments were designed for probing the basis of specificity of the archaeal hydrolase. Among the strictly conserved residues within the archaeal/eucaryal peptidyl-tRNA hydrolase family, three residues, K18, D86, and T90, appear of utmost importance for activity. They are located in the N-part of alpha1 and in the beta3-beta4 loop. K18 and D86, which form a salt bridge, might play a role in the catalysis thanks to their acid and basic functions, whereas the OH group of T90 could act as a nucleophile. These observations clearly distinguish the active site of the archaeal/eucaryal hydrolases from that of the bacterial/eucaryal ones, where a histidine is believed to serve as the catalytic base.

Details

ISSN :
15204995 and 00062960
Volume :
44
Database :
OpenAIRE
Journal :
Biochemistry
Accession number :
edsair.doi.dedup.....4703a3f3e6304d82c651ecb341e982e7