Back to Search Start Over

How do various maize crop models vary in their responses to climate change factors?

Authors :
Federico Sau
Sjaak Conijn
Delphine Deryng
Jean-Louis Durand
Katharina Waha
Edmar Teixeira
Iurii Shcherbak
R.E.E. Jongschaap
James W. Jones
Kenneth J. Boote
Maria Virginia Pravia
Jerry L. Hatfield
Alex C. Ruane
Christian Biernath
Patricio Grassini
H.L. Boogaard
Steven Hoek
K. Christian Kersebaum
Fulu Tao
Christian Baron
David Makowski
Claas Nendel
Sebastian Gayler
Dennis Timlin
Marc Corbeels
Christoph Müller
Nadine Brisson
Jon I. Lizaso
Naresh S. Kumar
Cynthia Rosenzweig
Simona Bassu
Armen R. Kemanian
Cesar Izaurralde
Bruno Basso
Giacomo De Sanctis
Myriam Adam
Soo-Hyung Kim
Eckart Priesack
Agronomie
AgroParisTech-Institut National de la Recherche Agronomique (INRA)
Unité de Recherche Pluridisciplinaire Prairies et Plantes Fourragères (P3F)
Institut National de la Recherche Agronomique (INRA)
Department of agronomy
University of Florida [Gainesville]
Department Produccion vegetal, Fitotecnia
Universidad Politécnica de Madrid (UPM)
Department of agricultural and biological engineering
GISS Climate impacts group
NASA Goddard Institute for Space Studies (GISS)
NASA Goddard Space Flight Center (GSFC)-NASA Goddard Space Flight Center (GSFC)
Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP)
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)
Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Department of geological sciences
Michigan State University [East Lansing]
Michigan State University System-Michigan State University System
Department crop systems, forestry and environmental sciences
University of Basilicata
Centre for Geo-Information
ALTERRA
WUR-Plant research international
Wageningen University and Research Centre [Wageningen] (WUR)
Agroécologie et Intensification Durables des cultures annuelles (Cirad-Persyst-UPR 115 AIDA)
Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Tyndall Centre for Climate Change Research
University of East Anglia [Norwich] (UEA)
School of Environmental Sciences [Norwich]
UE Agroclim (UE AGROCLIM)
Water and earth system science [Tübingen] (WESS)
Eberhard Karls Universität Tübingen
Department of agronomy and horticulture
University of Nebraska [Lincoln]
University of Nebraska System-University of Nebraska System
Department of plant science
University of Pensylvania
Institute of Lanscape Systems Analysis
Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF)
School of environmental and forest sciences
University of Washington [Seattle]
Centre for Environment Science and Climate Resilient Agriculture (CESCRA)
Indian Agricultural Research Institute (IARI)
Institute of landscape systems analysis
Institute of geographical sciences and natural resources research
Chinese Academy of Sciences [Changchun Branch] (CAS)
Institut National de la Recherche Agronomique ( INRA ) -AgroParisTech
Unité de Recherche Pluridisciplinaire Prairies et Plantes Fourragères ( P3F )
Institut National de la Recherche Agronomique ( INRA )
Universidad Politécnica de Madrid ( UPM )
NASA Goddard Institute for Space Studies ( GISS )
NASA Goddard Space Flight Center ( GSFC ) -NASA Goddard Space Flight Center ( GSFC )
Amélioration génétique et adaptation des plantes méditerranéennes et tropicales ( UMR AGAP )
Institut national de la recherche agronomique [Montpellier] ( INRA Montpellier ) -Centre international d'études supérieures en sciences agronomiques ( Montpellier SupAgro ) -Centre de Coopération Internationale en Recherche Agronomique pour le Développement ( CIRAD ) -Institut national d’études supérieures agronomiques de Montpellier ( Montpellier SupAgro )
Territoires, Environnement, Télédétection et Information Spatiale ( UMR TETIS )
Centre de Coopération Internationale en Recherche Agronomique pour le Développement ( CIRAD ) -AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture ( IRSTEA )
Wageningen University and Research Centre [Wageningen] ( WUR )
Annual cropping systems
Centre de Coopération Internationale en Recherche Agronomique pour le Développement
Tyndall Centre for climate change research and school of environmental sciences
University of East Anglia [Norwich] ( UEA )
UE Agroclim ( UE AGROCLIM )
Water and earth system science (WESS) competence cluster
University of Nebraska-Lincoln
Leibniz Centre for Agricultural Landscape Research
Centre for Environment Science and Climate Resilient Agriculture ( CESCRA )
Indian Agricultural Research Institute ( IARI )
Chinese Academy of Sciences [Changchun Branch] ( CAS )
University of Florida [Gainesville] (UF)
Department of Agricultural and Biological Engineering [Gainesville] (UF|ABE)
Institute of Food and Agricultural Sciences [Gainesville] (UF|IFAS)
University of Florida [Gainesville] (UF)-University of Florida [Gainesville] (UF)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Wageningen University and Research [Wageningen] (WUR)
Agroécologie et Intensification Durables des cultures annuelles (UPR AIDA)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Agroclim (AGROCLIM)
Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen
Source :
Global Change Biology, Global Change Biology, Wiley, 2014, 20 (7), pp.2301-2320. ⟨10.1111/gcb.12520⟩, Glob. Change Biol. 20, 2301-2320 (2014), Global Change Biology, ISSN 1354-1013, 2013-07, Vol. 20, No. 7, Global Change Biology, Wiley, 2014, 20 (7), pp.2301-2320. 〈10.1111/gcb.12520〉, Global Change Biology, 20(7), 2301-2320, Global Change Biology 20 (2014) 7, Archivo Digital UPM, Universidad Politécnica de Madrid
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

Comments This article is a U.S. government work, and is not subject to copyright in the United States. Abstract Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha 1 per °C. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.

Details

Language :
English
ISSN :
13541013 and 13652486
Database :
OpenAIRE
Journal :
Global Change Biology, Global Change Biology, Wiley, 2014, 20 (7), pp.2301-2320. ⟨10.1111/gcb.12520⟩, Glob. Change Biol. 20, 2301-2320 (2014), Global Change Biology, ISSN 1354-1013, 2013-07, Vol. 20, No. 7, Global Change Biology, Wiley, 2014, 20 (7), pp.2301-2320. 〈10.1111/gcb.12520〉, Global Change Biology, 20(7), 2301-2320, Global Change Biology 20 (2014) 7, Archivo Digital UPM, Universidad Politécnica de Madrid
Accession number :
edsair.doi.dedup.....472a29f5e81cb11a0456fef84cc9666a