Back to Search Start Over

Cayley-Hamilton-Newton identities and quasitriangular Hopf algebras

Authors :
Isaev, A. P.
Ogievetsky, O. V.
Pyatov, P. N.
Ogievetsky, Oleg
Centre de Physique Théorique - UMR 6207 (CPT)
Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
Publication Year :
1999
Publisher :
HAL CCSD, 1999.

Abstract

In the framework of the Drinfeld theory of twists in Hopf algebras we construct quantum matrix algebras which generalize the Reflection Equation and the RTT algebras. Finite-dimensional representations of these algebras related to the theory of nonultralocal spin chains are presented. The Cayley-Hamilton-Newton identities are demonstrated. These identities allow to define the quantum spectrum for the quantum matrices. We mention possible applications of the new quantum matrix algebras to constructions of noncommutative analogs of Minkowski space and quantum Poincar\'e algebras.<br />Comment: 11 pages, LaTeX. Submitted to the Proceedings of the Intern. Seminar "Supersymmetries and Quantum Symmetries" (27-31 July, 1999, Dubna, Russia)

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....4736191ff54afbfd981b8a8074e75903