Back to Search
Start Over
Single-spectrum prediction of kurtosis of water waves in a nonconservative model
- Source :
- Physical Review. E, Vol. 100 (2019) P. 013102
- Publication Year :
- 2019
- Publisher :
- American Physical Society (APS), 2019.
-
Abstract
- We study statistical properties after a sudden episode of wind for water waves propagating in one direction. A wave with random initial conditions is propagated using a forced-damped higher order Nonlinear Schr\"odinger equation (NLS). During the wind episode, the wave action increases, the spectrum broadens, the spectral mean shifts up and the Benjamin-Feir index (BFI) and the kurtosis increase. Conversely, after the wind episode, the opposite occurs for each quantity. The kurtosis of the wave height distribution is considered the main parameter that can indicate whether rogue waves are likely to occur in a sea state, and the BFI is often mentioned as a means to predict the kurtosis. However, we find that while there is indeed a quadratic relation between these two, this relationship is dependent on the details of the forcing and damping. Instead, a simple and robust quadratic relation does exist between the kurtosis and the bandwidth. This could allow for a single-spectrum assessment of the likelihood of rogue waves in a given sea state. In addition, as the kurtosis depends strongly on the damping and forcing coefficients, by combining the bandwidth measurement with the damping coefficient, the evolution of the kurtosis after the wind episode can be predicted.<br />Comment: 30 pages, 12 figures
- Subjects :
- Dynamical systems theory
Extreme event statistics
FOS: Physical sciences
Stochastic dynamical systems
ddc:500.2
Sea state
01 natural sciences
010305 fluids & plasmas
Dynamical systems
0103 physical sciences
Rogue wave
010306 general physics
Nonlinear waves
Statistiscs
Physics
Kurtosis
Rogue waves
Bandwidth (signal processing)
Mathematical analysis
Fluid Dynamics (physics.flu-dyn)
Probability and statistics
Quadratic relation
Physics - Fluid Dynamics
Hydrodynamic waves
Wind forcing
Physics - Atmospheric and Oceanic Physics
Nonlinear system
Physics - Data Analysis, Statistics and Probability
Atmospheric and Oceanic Physics (physics.ao-ph)
Data Analysis, Statistics and Probability (physics.data-an)
Subjects
Details
- ISSN :
- 24700053, 24700045, and 15393755
- Volume :
- 100
- Database :
- OpenAIRE
- Journal :
- Physical Review E
- Accession number :
- edsair.doi.dedup.....4769462635e2049ab6f8112807f0310c
- Full Text :
- https://doi.org/10.1103/physreve.100.013102