Back to Search
Start Over
HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation
- Source :
- Cell Death & Differentiation. 17:1392-1408
- Publication Year :
- 2010
- Publisher :
- Springer Science and Business Media LLC, 2010.
-
Abstract
- Neuronal outgrowth is guided by both extrinsic and intrinsic factors, involving transcriptional regulation. The acetylation of histones and transcription factors, which facilitates promoter accessibility, ultimately promotes transcription, and depends on the balance between histone deacetylases (HDACs) and histone acetyltransferases (HATs) activities. However, a critical function for specific acetylation modifying enzymes in neuronal outgrowth has yet to be investigated. To address this issue, we have used an epigenetic approach to facilitate gene expression in neurons, by using specific HDAC inhibitors. Neurons treated with a combination of HDAC and transcription inhibitors display an acetylation and transcription-dependent increase in outgrowth and a reduction in growth cone collapse on both 'permissive' (poly-D-lysine, PDL) and 'non-permissive' substrates (myelin and chondroitin sulphate proteoglycans (CSPGs)). Next, we specifically show that the expression of the histone acetyltransferases CBP/p300 and P/CAF is repressed in neurons by inhibitory substrates, whereas it is triggered by HDAC inhibition on both permissive and inhibitory conditions. Gene silencing and gain of function experiments show that CBP/p300 and P/CAF are key players in neuronal outgrowth, acetylate histone H3 at K9-14 and the transcription factor p53, thereby initiating a pro-neuronal outgrowth transcriptional program. These findings contribute to the growing understanding of transcriptional regulation in neuronal outgrowth and may lay the molecular groundwork for the promotion of axonal regeneration after injury.
- Subjects :
- Growth Cones
Models, Neurological
Gene Expression
Histone Deacetylase 2
Histone Deacetylase 1
Cell Enlargement
Biology
Histone Deacetylases
Histones
Histone H3
Cerebellum
Neurites
Transcriptional regulation
Animals
p300-CBP Transcription Factors
Gene Silencing
Epigenetics
Promoter Regions, Genetic
Molecular Biology
Transcription factor
Cells, Cultured
Cerebral Cortex
Neurons
Regulation of gene expression
Histone Acetyltransferases
Gene Expression Regulation, Developmental
Acetylation
Rats, Inbred Strains
Cell Biology
Rats
Histone Deacetylase Inhibitors
Histone
Chondroitin Sulfate Proteoglycans
biology.protein
Cancer research
Tumor Suppressor Protein p53
Myelin Proteins
Signal Transduction
Subjects
Details
- ISSN :
- 14765403 and 13509047
- Volume :
- 17
- Database :
- OpenAIRE
- Journal :
- Cell Death & Differentiation
- Accession number :
- edsair.doi.dedup.....4784a88f57ef275b4de534ed3cce9513
- Full Text :
- https://doi.org/10.1038/cdd.2009.216