Back to Search
Start Over
Sensitivity of Surface Urban Energy and Water Balance Scheme (SUEWS) to downscaling of reanalysis forcing data
- Publication Year :
- 2018
-
Abstract
- Often the meteorological forcing data required for urban hydrological models are unavailable at the required temporal resolution or for the desired period. Although reanalysis data can provide this information, the spatial resolution is often coarse relative to cities, so downscaling is required prior to use as realistic forcing. In this study, WATCH WFDEI reanalysis data are used to force the Surface Urban Energy and Water Balance Scheme (SUEWS). From sensitivity tests in two cities, Vancouver and London with different orography, we conclude precipitation is the most important meteorological variable to be properly downscaled to obtain reliable surface hydrology results, with relative humidity being the second most important. Overestimation of precipitation in reanalysis data at the three sites gives 6-21% higher annual modelled evaporation, 26-39% higher runoff at one site and 4% lower value at one site when compared to modelled values using observed forcing data. Application of a bias correction method to the reanalysis precipitation reduces the model bias compared to using observed forcing data, when evaluated using eddy covariance evaporation measurements. (c) 2017 Elsevier B.V. All rights reserved. Often the meteorological forcing data required for urban hydrological models are unavailable at the required temporal resolution or for the desired period. Although reanalysis data can provide this information, the spatial resolution is often coarse relative to cities, so downscaling is required prior to use as realistic forcing. In this study, WATCH WFDEI reanalysis data are used to force the Surface Urban Energy and Water Balance Scheme (SUEWS). From sensitivity tests in two cities, Vancouver and London with different orography, we conclude precipitation is the most important meteorological variable to be properly downscaled to obtain reliable surface hydrology results, with relative humidity being the second most important. Overestimation of precipitation in reanalysis data at the three sites gives 6-21% higher annual modelled evaporation, 26-39% higher runoff at one site and 4% lower value at one site when compared to modelled values using observed forcing data. Application of a bias correction method to the reanalysis precipitation reduces the model bias compared to using observed forcing data, when evaluated using eddy covariance evaporation measurements. (c) 2017 Elsevier B.V. All rights reserved. Often the meteorological forcing data required for urban hydrological models are unavailable at the required temporal resolution or for the desired period. Although reanalysis data can provide this information, the spatial resolution is often coarse relative to cities, so downscaling is required prior to use as realistic forcing. In this study, WATCH WFDEI reanalysis data are used to force the Surface Urban Energy and Water Balance Scheme (SUEWS). From sensitivity tests in two cities, Vancouver and London with different orography, we conclude precipitation is the most important meteorological variable to be properly downscaled to obtain reliable surface hydrology results, with relative humidity being the second most important. Overestimation of precipitation in reanalysis data at the three sites gives 6-21% higher annual modelled evaporation, 26-39% higher runoff at one site and 4% lower value at one site when compared to modelled values using observed forcing data. Application of a bias correction method to the reanalysis precipitation reduces the model bias compared to using observed forcing data, when evaluated using eddy covariance evaporation measurements. (c) 2017 Elsevier B.V. All rights reserved.
- Subjects :
- Atmospheric Science
Meteorological reanalysis
010504 meteorology & atmospheric sciences
0208 environmental biotechnology
Geography, Planning and Development
Eddy covariance
Orography
02 engineering and technology
Forcing (mathematics)
Environmental Science (miscellaneous)
01 natural sciences
020801 environmental engineering
Urban Studies
Water balance
13. Climate action
Climatology
Temporal resolution
Environmental science
Precipitation
1172 Environmental sciences
0105 earth and related environmental sciences
Downscaling
Subjects
Details
- Language :
- English
- ISSN :
- 22120955
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....47a3a46f07e2e35ea12bdbcd6b88e307