Back to Search Start Over

O efeito do processo de estampagem a quente no comportamento eletroqu??mico local do a??o 22MnB5 revestido com alum??nio-sil??cio por imers??o a quente

Authors :
Camila Pucci Couto
Jesualdo Luiz Rossi
Terryn Herman Albert
Krista van Den Bergh
Raynier Inocente Revilla Castillo
Iris de Graeve
Oscar Rosa Mattos
Source :
Repositório Institucional do IPEN, Instituto de Pesquisas Energéticas e Nucleares (IPEN), instacron:IPEN, Biblioteca Digital de Teses e Dissertações da USP, Universidade de São Paulo (USP), instacron:USP
Publication Year :
2021

Abstract

Press-hardened steel (PHS) is a strategic steel for the automotive industry. The application of this type of steel in the vehicle structure allows safety improvement, mass reduction and less fuel consumption. Due to its ultra-high-tensile strength, the PHS components are produced by means of hot-stamping process. Hot stamping is a thermo-mechanical process in which a steel blank is heated at austenitisation temperatures and then is transferred to a press tool, where the material is formed and quenched simultaneously. The steel substrate is often protected with metallic coatings prior to hot stamping to avoid its oxidation and decarburisation. Zinc and aluminium based systems are often used as coatings for automotive applications. However, for hot stamping, the hot-dip aluminium-silicon (Al-Si) system is the most widespread and used. This coating presents good corrosion and oxidation resistance at high temperatures. However, during hot stamping, the initial microstructure and chemical composition of the metallic coating changes completely due to diffusion. These microstructural and compositional changes take place in the austenitisation step. Hence, after hot stamping the whole coating layer becomes a complex multi-layered system in which the sublayers are enriched in either aluminium or iron/silicon. Consequently, the coating properties, including the corrosion properties, also change after hot stamping. However, little is known about the effect of the morphological and compositional changes of the Al-Si coating due to the thermo-mechanical process on its corrosion behaviour and performance. The different sublayers in the coating form different micro-galvanic-couplings, which can affect the global electrochemical behaviour of the system. Therefore, a detailed approach based on local electrochemical techniques was suggested to evaluate the role that each sublayer plays on the electrochemical behaviour. This work aimed at evaluating the effect of the hot-stamping process on the electrochemical behaviour of 22MnB5 coated with hot-dip Al-Si (10 % Si in mass fraction). The morphology-composition of the layered structure was obtained using field emission scanning electron microscopy (FE-SEM) combined with energy dispersive X-ray spectroscopy (EDS). Global corrosion properties were evaluated by open circuit potential (OCP), linear sweep voltammetry (LSV) and accelerated corrosion test. Nonetheless, the effect of each sublayer of the coating-steel system, on the electrochemical behaviour was investigated on a local scale by two complementary techniques: scanning Kelvin probe force microscopy (SKPFM) and electrochemical micro cell. The former was carried out in the samples\' cross-section and it shows high lateral resolution, while the latter was done from the top surface in a depth profile approach. Thus, it enabled the local potentiodynamic polarisation in an isolated sublayer. The results obtained during the implementation of this work highlight the high complexity of the Al-Si coating-steel system (composed of several layers), which in turn supports the need for local investigations. The morphology and composition of the coating were shown to be greatly influenced by the hot-stamping process (parameters) and this resulted in considerable variations of the local corrosion and electrochemical behaviour of the coating-steel system. O aço endurecido por prensagem (PHS- do inglês, press-hardened steel) é um aço estratégico para a indústria automotiva. A aplicação desse tipo de aço na estrutura do veículo permite melhoria da segurança, redução de massa e menor consumo de combustível. Devido à sua ultra-alta resistência à tração, os componentes de PHS são produzidos por meio do processo de estampagem a quente. A estampagem a quente é um processo termo-mecânico no qual um blanque de aço é aquecido a temperaturas de austenitização e então é transferido para uma ferramenta de prensagem, onde o material é conformado e temperado simultaneamente. O substrato de aço é frequentemente protegido com revestimentos metálicos antes da estampagem a quente para evitar sua oxidação e descarbonetação. Os sistemas baseados em zinco e alumínio são frequentemente usados como revestimentos para aplicações automotivas. No entanto, para estampagem a quente, o sistema de alumínio-silício por imersão a quente (Al-Si) é o mais difundido e utilizado. Este revestimento apresenta boa resistência à corrosão e oxidação em altas temperaturas. No entanto, durante a estampagem a quente, a composição química e microestrutural inicial do revestimento muda completamente devido à difusão. Essas mudanças microestruturais e composicionais ocorrem na etapa de austenitização. Portanto, após a estampagem a quente, toda a camada de revestimento se torna um sistema complexo de múltiplas camadas no qual as subcamadas são enriquecidas tanto em alumínio como em ferro/silício. Consequentemente, as propriedades do revestimento, incluindo as propriedades de corrosão, também mudam após a estampagem a quente. No entanto, pouco se sabe sobre o efeito das mudanças morfológicas e composicionais do revestimento de Al-Si devido ao processo termo-mecânico sobre seu comportamento e desempenho à corrosão. As diferentes subcamadas no revestimento formam diferentes acoplamentos micro-galvânicos, que podem afetar o comportamento eletroquímico global do sistema. Portanto, uma abordagem detalhada baseada em técnicas eletroquímicas locais foi sugerida para avaliar o papel que cada subcamada desempenha no comportamento eletroquímico. Este trabalho teve como objetivo avaliar o efeito do processo de estampagem a quente no comportamento eletroquímico do aço 22MnB5 revestido com Al-Si por imersão a quente (10% Si em fração de massa). A morfologia-composição da estrutura em camadas foi obtida usando microscopia eletrônica de varredura por emissão de campo (FE-SEM- do inglês, field emission-scanning electron microscopy) combinada com espectroscopia de energia dispersiva de raios X (EDS- do inglês, energy dispersive X-ray spectroscopy). As propriedades de corrosão global foram avaliadas por potencial de circuito aberto (OCP- do inglês, open circuit potential), voltametria de varredura linear (LSV- do inglês, linear sweep voltammetry) e teste de corrosão acelerada. No entanto, o efeito de cada subcamada do sistema revestimento-aço no comportamento eletroquímico foi investigado em escala local por duas técnicas complementares: microscopia de varredura de força por sonda Kelvin (SKPFM- do inglês, scanning Kelvin probe force microscopy) e microcélula eletroquímica. O primeiro foi realizado na seção transversal das amostras e apresenta alta resolução lateral; enquanto o último foi feito a partir da superfície superior em uma abordagem de perfil de profundidade. Desta forma, isso permitiu a polarização potenciodinâmica local em uma subcamada isolada. Os resultados obtidos durante a implementação deste trabalho destacam a alta complexidade do sistema de revestimento de aço Al-Si (composto por várias camadas), o que por sua vez suporta a necessidade de investigações locais. A morfologia e a composição do revestimento mostraram ser bastante influenciadas pelo processo de estampagem a quente (parâmetros) e isso resultou em variações consideráveis da corrosão local e do comportamento eletroquímico do sistema revestimento-aço.

Details

Database :
OpenAIRE
Journal :
Repositório Institucional do IPEN, Instituto de Pesquisas Energéticas e Nucleares (IPEN), instacron:IPEN, Biblioteca Digital de Teses e Dissertações da USP, Universidade de São Paulo (USP), instacron:USP
Accession number :
edsair.doi.dedup.....47ce70085db4a46baed61e4f3ee96a16