Back to Search
Start Over
An elementary and real approach to values of the Riemann zeta function
- Publication Year :
- 2008
- Publisher :
- arXiv, 2008.
-
Abstract
- An elementary approach for computing the values at negative integers of the Riemann zeta function is presented. The approach is based on a new method for ordering the integers and a new method for summation of divergent series. We show that the values of the Riemann zeta function can be computed, without using the theory of analytic continuation and functions of complex variable.<br />Comment: added comments on zeroes of $\eta(s)$ on page 3 and some new refs
- Subjects :
- Physics
Nuclear and High Energy Physics
Pure mathematics
Particular values of Riemann zeta function
Mathematics - Number Theory
Explicit formulae
FOS: Physical sciences
Proof of the Euler product formula for the Riemann zeta function
Prime-counting function
Mathematical Physics (math-ph)
Atomic and Molecular Physics, and Optics
Riemann zeta function
Riemann Xi function
Riemann hypothesis
symbols.namesake
Arithmetic zeta function
symbols
FOS: Mathematics
Number Theory (math.NT)
11M06, 11B68, 40C15
Mathematical Physics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....47d53dbcd59e2eeba906aff75f83fc6c
- Full Text :
- https://doi.org/10.48550/arxiv.0812.1878