Back to Search Start Over

Intelligent Analysis Algorithm for Satellite Health under Time-Varying and Extremely High Thermal Loads

Authors :
Yun-Ze Li
Zhuang-Zhuang Zhai
Tian-Tian Li
Li Enhui
Jia-Xin Li
Tong Li
Source :
Entropy, Volume 21, Issue 10, Entropy, Vol 21, Iss 10, p 983 (2019)
Publication Year :
2019
Publisher :
Multidisciplinary Digital Publishing Institute, 2019.

Abstract

This paper presents a dynamic health intelligent evaluation model proposed to analyze the health deterioration of satellites under time-varying and extreme thermal loads. New definitions such as health degree and failure factor and new topological system considering the reliability relationship are proposed to characterize the dynamic performance of health deterioration. The dynamic health intelligent evaluation model used the thermal network method (TNM) and fuzzy reasoning to solve the problem of model missing and non-quantization between temperature and failure probability, and it can quickly evaluate and analyze the dynamic health of satellite through the collaborative processing of continuous event and discrete event. In addition, the temperature controller in the thermal control subsystem (TCM) is the target of thermal damage, and the effects of different heat load amplitude, duty ratio, and cycle on its health deterioration are compared and analyzed.

Details

Language :
English
ISSN :
10994300
Database :
OpenAIRE
Journal :
Entropy
Accession number :
edsair.doi.dedup.....48236c291a5af3439ecd4a963bbac2a3
Full Text :
https://doi.org/10.3390/e21100983