Back to Search Start Over

Measuring hemoglobin spectra: searching for carbamino-hemoglobin

Authors :
Wilfried Uhring
Emmanuel Dervieux
Michael Theron
Quentin Bodinier
Source :
Journal of Biomedical Optics
Publication Year :
2020

Abstract

Significance: The arterial carbon dioxide (CO2) partial pressure PaCO2 is a clinically relevant variable. However, its measurement requires arterial blood sampling or bulky and expensive transcutaneous PtcCO2 meters. While the spectrophotometric determination of hemoglobin species—such as oxy-hemoglobin (O2Hb) and deoxy-hemoglobin (HHb)—allowed for the development of pulse oximetry, the measurement of CO2 blood content with minimal discomfort has not been addressed yet. Aim: Characterizing human carbamino-hemoglobin (CO2Hb) absorption spectrum, which is missing from the literature. Providing the theoretical background that will allow for transcutaneous, noninvasive PaCO2 measurements. Approach: A tonometry-based approach was used to obtain gas-equilibrated, lysed, diluted human blood. Equilibration was performed with both CO2, dinitrogen (N2), and ambient air. Spectrophotometric measurements were carried out on the 235- to 1000-nm range. A theoretical background was also derived from that of pulse oximetry. Results: The absorption spectra of both CO2Hb and HHb were extremely close and comparable with that of state-of-the-art HHb. The above-mentioned theoretical background led to an estimated relative error above 30% on the measured amount of CO2Hb in a subject’s blood. Auxiliary measurements revealed that the use of ethylene diamine tetraacetic acid did not interfere with spectrophotometric measurements, whereas sodium metabisulfite did. Conclusions: CO2Hb absorption spectrum was measured for the first time. Such spectrum being close to that of HHb, the use of a theoretical background based on pulse oximetry theory for noninvasive PaCO2 measurement seems extremely challenging.

Details

ISSN :
15602281
Volume :
25
Issue :
10
Database :
OpenAIRE
Journal :
Journal of biomedical optics
Accession number :
edsair.doi.dedup.....4829ad4f0ca11ca696b48bbedf6f5889