Back to Search Start Over

Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone

Authors :
Felix Beck
Jacqueline Deschamps
Frits Meijlink
Roel Neijts
Jennifer E. Rowland
Teddy Young
Moisés Mallo
Ana Nóvoa
Jean-Noël Freund
Monika Bialecka
Carina van Rooijen
Emma J. Stringer
Cesca van de Ven
Hubrecht Institute [Utrecht, Netherlands]
University Medical Center [Utrecht]-Royal Netherlands Academy of Arts and Sciences (KNAW)
Instituto Gulbenkian de Ciência [Oeiras] (IGC)
Fundação Calouste Gulbenkian
University of Leicester
De l'homéostasie tissulaire au cancer et à l'inflammation
Institut National de la Santé et de la Recherche Médicale (INSERM)
univOAK, Archive ouverte
Hubrecht Institute for Developmental Biology and Stem Cell Research
Source :
Development (Cambridge, England), Development (Cambridge, England), Company of Biologists, 2011, 138 (16), pp.3451-3462. ⟨10.1242/dev.066118⟩, Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Development, 138(16), 3451-3462. Company of Biologists Ltd
Publication Year :
2011
Publisher :
Company of Biologists, 2011.

Abstract

Decrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation by antagonizing Cdx function. We report here that the phenotypic similarity also applies to patterning of the caudal neural tube and uro-rectal tracts in Cdx and Wnt3a mutants, and in embryos precociously expressing Hox13 genes. Cdx2 inactivation after placentation leads to posterior defects, including incomplete uro-rectal septation. Compound mutants carrying one active Cdx2 allele in the Cdx4-null background (Cdx2/4), transgenic embryos precociously expressing Hox13 genes and a novel Wnt3a hypomorph mutant all manifest a comparable phenotype with similar uro-rectal defects. Phenotype and transcriptome analysis in early Cdx mutants, genetic rescue experiments and gene expression studies lead us to propose that Cdx transcription factors act via Wnt signaling during the laying down of uro-rectal mesoderm, and that they are operative in an early phase of these events, at the site of tissue progenitors in the posterior growth zone of the embryo. Cdx and Wnt mutations and premature Hox13 expression also cause similar neural dysmorphology, including ectopic neural structures that sometimes lead to neural tube splitting at caudal axial levels. These findings involve the Cdx genes, canonical Wnt signaling and the temporal control of posterior Hox gene expression in posterior morphogenesis in the different embryonic germ layers. They shed a new light on the etiology of the caudal dysplasia or caudal regression range of human congenital defects. [KEYWORDS: Animals, Cell Shape, Embryo, Mammalian/ metabolism, Female, Gene Expression Regulation, Developmental, Hedgehog Proteins/metabolism, Homeodomain Proteins/genetics/ metabolism, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Neural Tube/cytology/ metabolism, Signal Transduction, Transcription Factors/genetics/ metabolism, Tretinoin/metabolism, Wnt Proteins/genetics/ metabolism, Wnt3 Protein, Wnt3A Protein]

Details

Language :
English
ISSN :
09501991 and 14779129
Database :
OpenAIRE
Journal :
Development (Cambridge, England), Development (Cambridge, England), Company of Biologists, 2011, 138 (16), pp.3451-3462. ⟨10.1242/dev.066118⟩, Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Development, 138(16), 3451-3462. Company of Biologists Ltd
Accession number :
edsair.doi.dedup.....4885c1466c6e0ca844106e952d46dcc8
Full Text :
https://doi.org/10.1242/dev.066118⟩