Back to Search Start Over

Three-dimensional finite-difference & finite-element frequency-domain wave simulation with multi-level optimized additive Schwarz domain-decomposition preconditioner: A tool for FWI of sparse node datasets

Authors :
Tournier, Pierre-Henri
Jolivet, Pierre
Dolean, Victorita
Aghamiry, Hossein
Operto, Stéphane
Riffo, Sebastian
Algorithms and parallel tools for integrated numerical simulations (ALPINES)
Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Algorithmes Parallèles et Optimisation (IRIT-APO)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI)
Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Centre National de la Recherche Scientifique (CNRS)
Laboratoire Jean Alexandre Dieudonné (LJAD)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Department of Mathematics and Statistics [Univ Strathclyde]
University of Strathclyde [Glasgow]
Géoazur (GEOAZUR 7329)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
Source :
Geophysics, Geophysics, 2022, 87 (5), pp.1-84. ⟨10.1190/geo2021-0702.1⟩
Publication Year :
2021

Abstract

Efficient frequency-domain full-waveform inversion (FWI) of long-offset node data can be designed with a few discrete frequencies, which lead to modest data volumes to be managed during the inversion process. Moreover, attenuation effects can be straightforwardly implemented in the forward problem without the computational overhead. However, 3D frequency-domain seismic modeling is challenging because it requires solving a large and sparse linear indefinite system for each frequency with multiple right-hand sides (RHSs). This linear system can be solved by direct or iterative methods. The former allows efficient processing of multiple RHSs but may suffer from limited scalability for very large problems. Iterative methods equipped with a domain-decomposition preconditioner provide a suitable alternative to process large computational domains for sparse-node acquisition. We have investigated the domain-decomposition preconditioner based on the optimized restricted additive Schwarz (ORAS) method, in which a Robin or perfectly matched layer condition is implemented at the boundaries between the subdomains. The preconditioned system is solved by a Krylov subspace method, whereas a block low-rank lower-upper decomposition of the local matrices is performed at a preprocessing stage. Multiple sources are processed in groups with a pseudoblock method. The accuracy, the computational cost, and the scalability of the ORAS solver are assessed against several realistic benchmarks. In terms of discretization, we compare a compact wavelength-adaptive 27-point finite-difference stencil on a regular Cartesian grid with a P3 finite-element method on h-adaptive tetrahedral mesh. Although both schemes have comparable accuracy, the former is more computationally efficient, the latter being beneficial to comply with known boundaries such as bathymetry. The scalability of the method, the block processing of multiple RHSs, and the straightforward implementation of attenuation, which further improves the convergence of the iterative solver, make the method a versatile forward engine for large-scale 3D FWI applications from sparse node data sets.

Details

Language :
English
ISSN :
19422156 and 00168033
Database :
OpenAIRE
Journal :
Geophysics, Geophysics, 2022, 87 (5), pp.1-84. ⟨10.1190/geo2021-0702.1⟩
Accession number :
edsair.doi.dedup.....49137b9215ae4a501ae724a239ee4dde