Back to Search
Start Over
A quantitative, facile, and high-throughput image-based cell migration method is a robust alternative to the scratch assay
- Source :
- Journal of biomolecular screening. 16(2)
- Publication Year :
- 2011
-
Abstract
- Cell migration is a key phenotype for a number of therapeutically important biological responses, including angiogenesis. A commonly used method to assess cell migration is the scratch assay, which measures the movement of cells into a wound made by physically scoring a confluent cell monolayer to create an area devoid of cells. Although this method has been adequate for qualitative characterization of migration inhibitors, it does not provide the highly reproducible results required for quantitative compound structure-activity relationship evaluation because of the inconsistent size and placement of the wound area within the microplate well. The Oris™ Cell Migration Assay presents a superior alternative to the scratch assay, permitting formation of precisely placed and homogeneously sized cell-free areas into which migration can occur without releasing factors from wounded or dead cells or damaging the underlying extracellular matrix. Herein the authors compare results from the scratch and Oris™ cell migration assays using an endothelial progenitor cell line and the Src kinase inhibitor dasatinib. They find that using the Acumen™ Explorer laser microplate cytometer in combination with the Oris™ Cell Migration Assay plate provides a robust, efficient, and cost-effective cell migration assay exhibiting excellent signal to noise, plate uniformity, and statistical validation metrics.
- Subjects :
- Microplate Well
Angiogenesis
High-throughput screening
Cell
Dasatinib
Biology
Biochemistry
Endothelial progenitor cell
Analytical Chemistry
Extracellular matrix
Cell Movement
High-Throughput Screening Assays
medicine
Image Processing, Computer-Assisted
Humans
Protein Kinase Inhibitors
Cells, Cultured
Endothelial Cells
Cell migration
Molecular biology
Cell biology
Thiazoles
medicine.anatomical_structure
Pyrimidines
Molecular Medicine
Cell Migration Assays
Biotechnology
Subjects
Details
- ISSN :
- 1552454X
- Volume :
- 16
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Journal of biomolecular screening
- Accession number :
- edsair.doi.dedup.....49291b04bb0073e3ab164899cd1fbee0