Back to Search
Start Over
Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
- Source :
- Nature Communications, Vol 11, Iss 1, Pp 1-11 (2020), E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Nature Communications, Nature Communications, 2020, 11 (1), ⟨10.1038/s41467-020-20142-y⟩, Nature Communications, Nature Publishing Group, 2020, 11 (1), ⟨10.1038/s41467-020-20142-y⟩, CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, E-Prints Complutense. Archivo Institucional de la UCM, instname
- Publication Year :
- 2020
- Publisher :
- Nature Portfolio, 2020.
-
Abstract
- Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.<br />Randomised controlled experiments are the gold standard for scientific inference, but environmental and social scientists often rely on different study designs. Here the authors analyse the use of six common study designs in the fields of biodiversity conservation and social intervention, and quantify the biases in their estimates.
- Subjects :
- 0106 biological sciences
Research design
Scientific community
SCIENTIFIC COMMUNITY
Medio ambiente natural
sosiaalitieteet
Psychological intervention
General Physics and Astronomy
Social Sciences
QH75
01 natural sciences
Environmental impact
purl.org/becyt/ford/1 [https]
010104 statistics & probability
706/648
Credibility
Prevalence
Social science
ComputingMilieux_MISCELLANEOUS
GE
Multidisciplinary
Ecology
article
Sampling (statistics)
Biodiversity
näyttöön perustuvat käytännöt
satunnaistetut vertailukokeet
ENVIRONMENTAL IMPACT
Research Design
Scale (social sciences)
[SDE]Environmental Sciences
H1
Science
Environment
010603 evolutionary biology
General Biochemistry, Genetics and Molecular Biology
Social sciences
Bias
tutkimusmenetelmät
QH541
704/172/4081
Humans
0101 mathematics
purl.org/becyt/ford/1.6 [https]
ympäristötieteet
poliittinen päätöksenteko
Clinical study design
metodologia
706/689
General Chemistry
15. Life on land
Ecología
Literature
Pairwise comparison
Observational study
631/158
luotettavuus
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 11
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Nature Communications
- Accession number :
- edsair.doi.dedup.....493082571c46b1de097083387c4f7a61
- Full Text :
- https://doi.org/10.1038/s41467-020-20142-y⟩