Back to Search Start Over

Local behavior of sparse analysis regularization: Applications to risk estimation

Authors :
Charles Dossal
Jalal M. Fadili
Samuel Vaiter
Charles-Alban Deledalle
Gabriel Peyré
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Equipe Image - Laboratoire GREYC - UMR6072
Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
ANR-08-EMER-0009,NatImages,Adaptivité pour la représentation des images naturelles et des textures(2008)
European Project: 279593,EC:FP7:ERC,ERC-2011-StG_20101014,SIGMA-VISION(2011)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)
Source :
Applied and Computational Harmonic Analysis, Applied and Computational Harmonic Analysis, 2013, 35 (3), pp.433-451. ⟨10.1016/j.acha.2012.11.006⟩, Applied and Computational Harmonic Analysis, Elsevier, 2013, 35 (3), pp.433-451. ⟨10.1016/j.acha.2012.11.006⟩
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

International audience; In this paper, we aim at recovering an unknown signal x0 from noisy L1measurements y=Phi*x0+w, where Phi is an ill-conditioned or singular linear operator and w accounts for some noise. To regularize such an ill-posed inverse problem, we impose an analysis sparsity prior. More precisely, the recovery is cast as a convex optimization program where the objective is the sum of a quadratic data fidelity term and a regularization term formed of the L1-norm of the correlations between the sought after signal and atoms in a given (generally overcomplete) dictionary. The L1-sparsity analysis prior is weighted by a regularization parameter lambda>0. In this paper, we prove that any minimizers of this problem is a piecewise-affine function of the observations y and the regularization parameter lambda. As a byproduct, we exploit these properties to get an objectively guided choice of lambda. In particular, we develop an extension of the Generalized Stein Unbiased Risk Estimator (GSURE) and show that it is an unbiased and reliable estimator of an appropriately defined risk. The latter encompasses special cases such as the prediction risk, the projection risk and the estimation risk. We apply these risk estimators to the special case of L1-sparsity analysis regularization. We also discuss implementation issues and propose fast algorithms to solve the L1 analysis minimization problem and to compute the associated GSURE. We finally illustrate the applicability of our framework to parameter(s) selection on several imaging problems.

Details

ISSN :
10635203 and 1096603X
Volume :
35
Database :
OpenAIRE
Journal :
Applied and Computational Harmonic Analysis
Accession number :
edsair.doi.dedup.....493ba7eb6a427bf67941526492c6448d
Full Text :
https://doi.org/10.1016/j.acha.2012.11.006