Back to Search Start Over

Most human proteins made in both nucleus and cytoplasm turn over within minutes

Authors :
Sabyasachi Baboo
Philippe Pierre
Haibo Jiang
Peter R. Cook
Benjamin G. Davis
Chris R. M. Grovenor
Bhaskar Bhushan
Source :
PLoS ONE, PLoS ONE, Vol 9, Iss 6, p e99346 (2014)
Publication Year :
2014

Abstract

In bacteria, protein synthesis can be coupled to transcription, but in eukaryotes it is believed to occur solely in the cytoplasm. Using pulses as short as 5 s, we find that three analogues – L-azidohomoalanine, puromycin (detected after attaching fluors using ‘click’ chemistry or immuno-labeling), and amino acids tagged with ‘heavy’ 15N and 13C (detected using secondary ion mass spectrometry) – are incorporated into the nucleus and cytoplasm in a process sensitive to translational inhibitors. The nuclear incorporation represents a significant fraction of the total, and labels in both compartments have half-lives of less than a minute; results are consistent with most newly-made peptides being destroyed soon after they are made. As nascent RNA bearing a premature termination codon (detected by fluorescence in situ hybridization) is also eliminated by a mechanism sensitive to a translational inhibitor, the nuclear turnover of peptides is probably a by-product of proof-reading the RNA for stop codons (a process known as nonsense-mediated decay). We speculate that the apparently-wasteful turnover of this previously-hidden (‘dark-matter’) world of peptide is involved in regulating protein production.

Details

ISSN :
19326203
Volume :
9
Issue :
6
Database :
OpenAIRE
Journal :
PloS one
Accession number :
edsair.doi.dedup.....497c44c3169f2d6dc38a37a29d11ae54