Back to Search
Start Over
Coherent state transforms and vector bundles on elliptic curves
- Source :
- Journal of Functional Analysis. 204:355-398
- Publication Year :
- 2003
- Publisher :
- Elsevier BV, 2003.
-
Abstract
- We extend the coherent state transform (CST) of Hall to the context of the moduli spaces of semistable holomorphic vector bundles with fixed determinant over elliptic curves. We show that by applying the CST to appropriate distributions, we obtain the space of level k, rank n and genus one non-abelian theta functions with the unitarity of the CST transform being preserved. Furthermore, the shift k -> k+n appears in a natural way in this finite-dimensional framework.<br />small misprints corrected
- Subjects :
- High Energy Physics - Theory
Mathematics - Differential Geometry
Pure mathematics
Rank (linear algebra)
Unitarity
Holomorphic function
FOS: Physical sciences
Vector bundle
Theta function
14K25, 14H60, 22E30, 65R10
Space (mathematics)
Functional Analysis (math.FA)
Moduli space
Mathematics - Functional Analysis
Physics::Fluid Dynamics
Mathematics - Algebraic Geometry
Elliptic curve
Mathematics::Algebraic Geometry
High Energy Physics - Theory (hep-th)
Differential Geometry (math.DG)
FOS: Mathematics
Algebraic Geometry (math.AG)
Analysis
Mathematics
Subjects
Details
- ISSN :
- 00221236
- Volume :
- 204
- Database :
- OpenAIRE
- Journal :
- Journal of Functional Analysis
- Accession number :
- edsair.doi.dedup.....49aae371e31438df4b818f854ca46e27
- Full Text :
- https://doi.org/10.1016/s0022-1236(03)00108-3