Back to Search Start Over

Deletion of the sodium/hydrogen exchanger 6 causes low bone volume in adult mice

Authors :
Patrycja Kucharczyk
Roland Baron
Silvia Dolder
Mark Siegrist
Ganesh Pathare
Giuseppe Albano
Daniela Schnyder
Wilhelm Hofstetter
Manuel Anderegg
Daniel Guido Fuster
Source :
Schnyder, Daniela; Albano, Giuseppe; Kucharczyk, Patrycja; Dolder, Silvia; Siegrist, Mark; Anderegg, Manuel; Pathare, Ganesh; Hofstetter, Wilhelm; Baron, Roland; Fuster, Daniel G. (2021). Deletion of the sodium/hydrogen exchanger 6 causes low bone volume in adult mice. Bone, 153, p. 116178. Elsevier 10.1016/j.bone.2021.116178
Publication Year :
2021

Abstract

The sodium/hydrogen exchanger 6 (NHE6) localizes to recycling endosomes, where it mediates endosomal alkalinization through K+/H+ exchange. Mutations in the SLC9A6 gene encoding NHE6 cause severe X-linked mental retardation, epilepsy, autism and corticobasal degeneration in humans. Patients with SLC9A6 mutations exhibit skeletal malformations, and a previous study suggested a key role of NHE6 in osteoblast-mediated mineralization. The goal of this study was to explore the role of NHE6 in bone homeostasis. To this end, we studied the bone phenotype of NHE6 knock-out mice by microcomputed tomography, quantitative histomorphometry and complementary ex vivo and in vitro studies. We detected NHE6 transcript and protein in both differentiated osteoclasts and mineralizing osteoblasts. In vitro studies with osteoclasts and osteoblasts derived from NHE6 knock-out mice demonstrated normal osteoclast differentiation and osteoblast proliferation without an impairment in mineralization capacity. Microcomputed tomography and bone histomorphometry studies showed a significantly reduced bone volume and trabecular number as well as an increased trabecular space at lumbar vertebrae of 6 months old NHE6 knock-out mice. The bone degradation marker c-terminal telopeptides of type I collagen was unaltered in NHE6 knock-out mice. However, we observed a reduction of the bone formation marker procollagen type 1 N-terminal propeptide, and increased circulating sclerostin levels in NHE6 knock-out mice. Subsequent studies revealed a significant upregulation of sclerostin transcript expression in both primary calvarial cultures and femora derived from NHE6 knock-out mice. Thus, loss of NHE6 in mice causes an increase of sclerostin expression associated with reduced bone formation and low bone volume.

Details

ISSN :
18732763
Volume :
153
Database :
OpenAIRE
Journal :
Bone
Accession number :
edsair.doi.dedup.....49c7516b0c8a3496f2fcda54bddf4621
Full Text :
https://doi.org/10.1016/j.bone.2021.116178