Back to Search
Start Over
Optimization of a closed rat tibial fracture model
- Source :
- Journal of Experimental Orthopaedics, Journal of Experimental Orthopaedics, Vol 5, Iss 1, Pp 1-9 (2018)
- Publication Year :
- 2018
- Publisher :
- Springer Science and Business Media LLC, 2018.
-
Abstract
- Background The use of a closed fracture model has become the preferred model to study the fracture healing process, given that the periosteum and the soft tissue surrounding the fracture site play an important role in the fracture healing process. Some techniques like osteotomy, drilling the long bones and the use of the guillotine-like apparatus to induce fracture are characterized by some undesirable effects and complications. The aim of this study is to optimize and evaluate an in vivo fracture model using three-point bending pliers that can be used to study secondary bone fracture healing in rats. Methods Modified three-point bending pliers were used as a device to create the closed rat tibial bone fracture that was prefixed with an intramedullary pin (23 G × 11/2″) in rats. The exact location of the induced closed fracture was along the long bone. The presence of bone comminution, and the fracture bone alignment were immediately examined after the induction of the fracture until the 6th week. Results All fractures induced were transverse, located in the middle to proximal one third of the tibia, and they all healed without complications. Bone union as shown radiographically occurred within 2–3 weeks postoperative. The average angle of the fracture line with the axis of the tibia was 89.41 ± 2.11°. The lateral and anterio-posterior pin angulation views were 167.33 ± 3.67° and 161.60 ± 4.87° respectively. The average length of proximal end of the fractured bone in comparison with the whole length of intact bone was 41.02 ± 3.27%. There was a significant difference in percentage of the gross callus area and gross callus index, while there was no significant difference in X-ray callus index. There was no significant difference of the gross callus area between slight comminution (n = 4) and non comminution (n = 21). Conclusion The optimized rat tibial fracture model resulted in mainly transverse tibial mid-shaft fractures with minimal bone comminution and absence of surrounding soft tissue damage. The size area of consequent soft callus formation and the extent to which the closed fracture model was reproducible are very good outcomes making it feasible for in vivo laboratory research use.
- Subjects :
- Materials science
Callus formation
medicine.medical_treatment
Long bone
030209 endocrinology & metabolism
Bone healing
Osteotomy
law.invention
Intramedullary rod
03 medical and health sciences
Closed Fracture
0302 clinical medicine
lcsh:Orthopedic surgery
law
In vivo
medicine
Orthopedics and Sports Medicine
Tibia
Fracture model
Orthodontics
030222 orthopedics
Research
Bone fracture
medicine.disease
Rats
lcsh:RD701-811
medicine.anatomical_structure
Subjects
Details
- ISSN :
- 21971153
- Volume :
- 5
- Database :
- OpenAIRE
- Journal :
- Journal of Experimental Orthopaedics
- Accession number :
- edsair.doi.dedup.....49edfb7471211eb3d6e37339956037d9
- Full Text :
- https://doi.org/10.1186/s40634-018-0128-6