Back to Search Start Over

Binary Neural Network Aided CSI Feedback in Massive MIMO System

Authors :
Jian Song
Jintao Wang
Zhilin Lu
Publication Year :
2020

Abstract

In massive multiple-input multiple-output (MIMO) system, channel state information (CSI) is essential for the base station to achieve high performance gain. Recently, deep learning is widely used in CSI compression to fight against the growing feedback overhead brought by massive MIMO in frequency division duplexing system. However, applying neural network brings extra memory and computation cost, which is non-negligible especially for the resource limited user equipment (UE). In this paper, a novel binarization aided feedback network named BCsiNet is introduced. Moreover, BCsiNet variants are designed to boost the performance under customized training and inference schemes. Experiments shows that BCsiNet offers over 30$\times$ memory saving and around 2$\times$ inference acceleration for encoder at UE compared with CsiNet. Furthermore, the feedback performance of BCsiNet is comparable with original CsiNet. The key results can be reproduced with https://github.com/Kylin9511/BCsiNet.<br />6 pages, 5 figures, 4 tables. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....49f143504dbb0c38599681a982404d1c